

भारत के नियंत्रक महालेखापरीक्षक

ф

हाईड्रो पावर सीपीएसईज (एनएचपीसी लिमिटेड, एसजेवीएन लिमिटेड, टीएचडीसी इण्डिया लिमिटेड एवं एनएचडीसी लिमिटेड) द्वारा आपदा प्रबंधन सहित क्षमता उपयोग, विद्युत उत्पादन, बिक्री एवं राजस्व के संग्रहण पर प्रतिवेदन

संघ सरकार (वाणिज्यिक) विद्युत मंत्रालय 2015 की सं. 41 (निष्पादन लेखापरीक्षा)

भारत के नियंत्रक महालेखापरीक्षक

का

हाईड्रो पावर सीपीएसईज (एनएचपीसी लिमिटेड, एसजेवीएन लिमिटेड, टीएचडीसी इण्डिया लिमिटेड एवं एनएचडीसी लिमिटेड) द्वारा आपदा प्रबंधन सहित क्षमता उपयोग, विद्युत उत्पादन, बिक्री एवं राजस्व के संग्रहण पर प्रतिवेदन

संघ सरकार (वाणिज्यिक)
विद्युत मंत्रालय
2015 की सं. 41
(निष्पादन लेखापरीक्षा)

विषय-सूची

विषय	पृष्ठ सं.			
प्राक्कथन	iii			
कार्यकारी सार	V			
अध्याय-I	अध्याय-I प्रस्तावना			
अध्याय- II	लेखापरीक्षा पद्धति	5		
अध्याय-III	क्षमता उपयोग तथा विद्युत उत्पादन	9		
अध्याय-IV	17			
अध्याय-V	21			
अध्याय-VI	27			
अध्याय-VII	41			
अध्याय-VIII	44			
अनुबंध	49			
तकनीकी शब्दावली	64			
संकेताक्षरों की सूची	67			

प्राक्कथन

हाइड्रो पावर, ऊर्जा का एक नवीकरण योग्य और पर्यावरण सम्बन्धी अनुकूल स्रोत है। चूंकि हाईड्रो पावर स्टेशनों में तात्कालिक प्रचालनों के लिए अन्तर्निहित सामर्थ्यता होती है, वे अधिकतम मांग को पूरा करने और पावर प्रणाली की विश्वसनीयता को सुधारने के लिए अधिकतर अन्य ऊर्जा स्रोतों की अपेक्षा अधिक प्रतिक्रियाशील हैं। अतः यह महत्वपूर्ण है कि विद्यमान हाईड्रो क्षमता का ईष्टतम रूप से उपयोग किया जाए। देश की हाईड्रो पावर उत्पादन क्षमता में 23.72 प्रतिशत के शेयर सहित चार सीपीएसईज अर्थात; एनएचपीसी लिमिटेड (एनएचपीसी), एसजेवीएन लिमिटेड (एसजेवीएन), टीएचडीसी इंडिया लिमिटेड (टीएचडीसी) और एनएचडीसी लिमिटेड (एनएचडीसी) इस संदर्भ में महत्वपूर्ण भूमिका अदा करते हैं।

उपरोक्त पृष्ठभूमि में निष्पादन लेखापरीक्षा अप्रैल 2009 और मार्च 2014 के मध्य इन चार सीपीएसईज द्वारा उत्पादन से लेकर राजस्व के संग्रहण तक की गतिविधियों की प्रभावकारिता का निर्धारण करने के लिए की गई थी। उत्तराखंड में 16-17 जून 2013 को आई आकस्मिक बाढ़ की घटना के परिणामस्वरूप इन सीपीएसईज में आपदा प्रबंधन के विशिष्ट पहलू को भी शामिल किया गया है।

यह लेखापरीक्षा प्रतिवेदन भारत के नियंत्रक-महालेखापरीक्षक के लेखापरीक्षा एवं लेखा विनियम 2007 तथा निष्पादन लेखापरीक्षा दिशानिर्देश 2014 के अनुसार तैयार किया गया है।

लेखापरीक्षा, लेखापरीक्षा प्रक्रिया के प्रत्येक स्तर पर एनएचपीसी, एसजेवीएन, टीएचडीसी, एनएचडीसी और विद्युत मंत्रालय, भारत सरकार से प्राप्त सहयोग हेतु आभार व्यक्त करती है।

कार्यकारी-सार

कार्यकारी-सार

प्रस्तावना

हाइड्रो पावर ऊर्जा का एक नवीकरण योग्य और पर्यावरण सम्बन्धी अनुकूल स्रोत है। चूंकि हाईड्रो पावर स्टेशनों में तात्कालिक प्रचालनों के लिए अन्तर्निहित सामर्थ्यता होती है, वे अधिकतम मांग को पूरा करने और पावर प्रणाली की विश्वसनीयता को सुधारने के लिए अधिकतर अन्य ऊर्जा स्रोतों की अपेक्षा अधिक प्रतिक्रियाशील हैं। अतः यह महत्वपूर्ण है कि विद्यमान हाईड्रो क्षमता का इष्टतम रूप से उपयोग किया जाए। देश की हाईड्रो पावर उत्पादन क्षमता में 23.72 प्रतिशत के शेयर सहित चार सीपीएसईज अर्थातः एनएचपीसी लिमिटेड (एनएचपीसी), एसजेवीएन लिमिटेड (एसजेवीएन), टीएचडीसी इंडिया लिमिटेड (टीएचडीसी) और एनएचडीसी लिमिटेड (एनएचडीसी) इस संदर्भ में महत्वपूर्ण भूमिका अदा करते हैं।

(पेरा 1.1)

हमारी लेखापरीक्षा में क्या शामिल है?

इस प्रतिवेदन में अप्रैल 2009 और मार्च 2014 के मध्य इन चार सीपीएसईज़ द्वारा राजस्व के उत्पादन से संग्रहण तक की गतिविधियों को शामिल किया गया है। उत्तराखंड में 16-17 जून 2013 को आई आकास्मिक बाढ़ की घटना के परिणामस्वरूप इन सीपीएसईज में आपदा प्रबंधन के विशिष्ट पहलू को भी शामिल किया गया है। लेखापरीक्षा ने इन्टरएक्टिव डॉटा एक्सट्रेकशन एण्ड एनलिसिस (आईडीईए) सॉफ्टवेयर का उपयोग करते हुए 31 मार्च 2014 को आठ एनएचपीसी पावर स्टेशनों के एक प्रतिनिधि नमूने का चयन किया। बचे हुए तीन सीपीएसईज के संबंध में, जिनमें एक या दो पावर स्टेशन थे, प्रत्येक सीपीएसई के एकमात्र पावर स्टेशन या पुराने पावर स्टेशन का चयन किया गया था।

(पैरा 2.1 और 2.5)

हमारे मुख्य लेखापरीक्षा निष्कर्ष

निष्पादन लेखापरीक्षा में क्षमता उपयोग, जलाशय का स्तर बनाये रखने, डिसिल्टिंग के लिए फ्लिशंग प्रचालनों के संचालन, उत्पादक इकाईयों के अनुरक्षण, राजस्व संग्रहण एवं आपदा प्रबंधन की उपलिख्यों में किमयों का उल्लेख किया गया है। महत्वपूर्ण लेखापरीक्षा निष्कर्षों को नीचे सांराशीकृत किया गया है:

(i) ऊर्जा स्टेशनों द्वारा क्षमता का कम उपयोग

निष्पादन लेखापरीक्षा द्वारा शामिल की गई अवधि के दौरान एनएचपीसी के बेरासियूल, तीस्ता-V, चमेरा III और चुटक पावर स्टेशनों का औसत क्षमता उपयोगिता घटक (सीयूएफ) उनके संबंधित डिजाइन सीयूएफ से कम था।

टीएचपीएस को 830 मी के पूर्ण जलाशय स्तर के लिए एक बहुउद्देश्य परियोजना के रूप में बनाया गया था। टीएचडीसी द्वारा उपलब्ध कराई गई ₹ 972.97 करोड़ की राशि की निधियों से राज्य सरकार द्वारा परिवारों का पुनर्वास किया गया था। तथापि, टीएचडीसी को अभी तक ईएल 825 मी से अधिक जलाशय भरने के लिए अनुमित नहीं है।

(पैरा 3.1.1 और 3.1.2)

(ii) डिजाइन ऊर्जा की गैर-समीक्षा

1994-95 के प्रारम्भ से सभी 20 वर्षों के दौरान चमेरा- I पावर स्टेशन में वास्तविक उत्पादन डिज़ाइन उर्जा से 13 से 60 प्रतिशत तक अधिक था। तथापि, इसकी डिजाइन ऊर्जा की सीइए दिशानिर्देशों के अनुसार समीक्षा नहीं की गई। जैसा कि डिजाइन ऊर्जा पावर स्टेशन की स्थाई लागतों की वसूली के लिए आधार बनाती है, फिर भी डिजाइन ऊर्जा की यथार्थवादी समीक्षा नहीं की गई जिसके परिणामस्वरूप 2009-2014 के दौरान उपभोक्ताओं पर परिणामी अतिरिक्त भार डालते हुए 3592 एमयूज गौण ऊर्जा¹ की बिक्री से चमेरा-I पावर स्टेशन को ₹ 274.98 करोड² का अतिरिक्त अर्जन हुआ।

(पैरा 3.1.3)

(iii) अपर्याप्त फ्लशिंग प्रचालनों के कारण सकल तथा जीवंत जलाशय क्षमताओं में कमी

जलाशय में जमा हुई गाद को (i) मानसून के दौरान विनिर्दिष्ट स्तर तक जलाशय में पानी को रखते हुए (ii) और/अथवा विनिर्दिष्ट प्रतिमानों के अनुसार डिसिल्टिंग के लिए नियमित फ्लिशिंग प्रचालनों के संचालन द्वारा न्यूतनम किया जा सकता है। उपरोक्त शर्तों का अननुपालन न केवल जलाशयों और पावर स्टेशनों के उपयोगी जीवन काल को कम करता है बल्कि बाढ़ प्रबंधन को भी अधिक मुश्किल बनाता है। पर्याप्त फ्लिशिंग और निर्धारित जलाशय स्तरों के अनुरक्षण न करने के कारण 31 मार्च 2014 को समाप्त पाँच वर्षों के दौरान तीन एनएचपीसी पावर स्टेशनों की सकल एवं जीवंत जलाशय क्षमता कम हो गई थी।

(पैरा 3.1.4और 3.1.5)

(iv) मॉनसून के दौरान बलात आउटेज के कारण विद्युत उत्पादन की हानि

सीईआरसी द्वारा निर्धारित हाइड्रो पावर स्टेशनों के लिए परिचालन प्रतिमानों के अनुसार सभी मशीनों को मॉनसून अविध के दौरान सभी प्रकार के संयंत्रों के लिए 24 घंटे उपलब्ध कराया जाना अपेक्षित था। तथापि, 2009-14 की मानसून अविध के दौरान सीपीएसईज की मशीनों को कुल 9871 घंटों का बलात आउटेज वहन करना पड़ा। बलात आउटेज की अविध टीएचपीएस में 293 घंटे से चुटक पावर स्टेशन में 2085 घंटे के मध्य थी।

(पेरा 4.3.1)

(v) बिलिंग तथा राजस्व संकलन में मुद्दे

सीपीएसईज द्वारा ऊर्जा बिलिंग एवं संकलन की जाँच से यह पता चला कि अपेक्षित राशि के लिए एलसीज खोलने और एलसी के निर्धारित अधिकतम मासिक परिक्रमण की अनिवार्य शर्तों का अनुपालन एनएचपीसी द्वारा सुनिश्चित नहीं किया गया था। तदनुसार, एनएचपीसी द्वारा ऐसे लाभार्थियों को ₹ 60.48 करोड़ की छूट अनुमत की गई जो छूट नीति के अनुसार छूट के लिए पात्र नहीं थे।

(पेरा 5.1.2)

¹ डिजाइन उर्जा से अधिक उत्पन्न ऊर्जा।

^{2 ₹ 0.80} प्रति यूनिट की सीमा के अध्यधीन संबंधित वित्तीय वर्षों की उर्जा प्रभार दर से वर्ष 2009-10 से 2013-14 के दौरान उत्पादित अनुषंगी ऊर्जा को गुणा करते हुए निकाला गया।

मार्च 2015 को सीपीएसईज के ₹ 4112.49 करोड़ के बकाया देय पांच लाभार्थियों³ से वसूल हुए बिना रहे सीपीएसईज को नियमित रूप से चूककर्ता लाभार्थियों से प्राप्यों की वसूली के लिए विभिन्न संभावनाओं की गंभीरता से समीक्षा करनी चाहिए।

(पेरा 5.2.1)

(vi) आपदा प्रबंधन योजनाओं में सीडब्ल्यूसी दिशानिर्देशों की गैर-समीक्षा और शामिल न करना

एनएचडीसी के इंदिरा सागर पावर स्टेशन को छोड़कर निष्पादन लेखपरीक्षा के लिए चयनित सभी पावर स्टेशनों की आपदा प्रबंधन योजना (डीएमपी) सीडब्ल्यूसी दिशानिर्देशों के अनुसार नहीं थी। इन डीएमपीज में बॉध ब्रेक विश्लेषण के परिणाम के रूप में आपातकालीन कार्रवाई योजना को भी समाविष्ट नहीं किया गया था। आपदा प्रबंधन अधिनियम, 2005 की आवश्यकता के अनुसार डीएमपीज की वार्षिक तौर पर समीक्षा भी नहीं की गई थी। हालांकि बाद में सीपीएसईज ने डीएमपीज की समीक्षा करने की प्रक्रिया प्रारंभ कर दी थी।

(पैरा 6.3.1, 6.3.2और 6.5)

(vii) एनएचपीसी के धौलीगंगा और टनकपुर पावर स्टेशनों द्वारा अप्रभावी बाढ़ प्रबंधन

जून 2013 की बाढ़ के दौरान धौलीगंगा पावर स्टेशन की क्षित को जलाशय प्रचालन विनियम पुस्तक/आपदा प्रबंधन योजना अग्रिम चेतावनी प्रणाली, जलाशय स्तरों के नियमन, जलाशय की फ्लिशंग और ड्राफ्ट ट्यूब गेट्स के बंद करने संबंधित प्रावधानों का अनुपालन करते हुए, कम किए जाने की संभावना थी। बाढ़ के बाद धौलीगंगा पावर स्टेशन से विद्युत उत्पादन मई 2014 तक आस्थिगित रहा। इसी प्रकार मॉनसून से पहले बॉध सुरक्षा दल द्वारा बताई गई किमयों का समय से ठीक करने और बैराज विनियमन नियमावली के अनुसार बैराज गेटों के प्रचालन से जून 2013 की बाढ़ से टनकपुर पावर स्टेशन (टीपीएस) को हुई क्षित को कम किया जा सकता था। क्षितियों के सुधार के लिए 11 जनवरी 2014 से 28 मार्च 2014 तक टीपीएस को पूर्ण रूप से बंद करना पडा।

(पैरा 6.6.1 तथा 6.6.2)

हम क्या सिफारिश करते हैं ?

लेखापरीक्षा निष्कर्षों के आधार पर हाइड्रो पावर स्टेशनों के प्रचालन में सुधार एवं अनुरक्षण की सुविधा के लिए निम्न अनुशंसाएँ की गई है:

विद्युत मंत्रालय

- (i) ईएल 830 मी. तक टीहरी जलाशय को न भरे जाने के लम्बे समय से लंबित मामले को त्वरित सुलझाने के लिए हस्तक्षेप करे ।
- (ii) उपभोक्ताओं के हितों एवं उत्पादक द्वारा लागत की उचित वसूली में संतुलन की राष्ट्रीय विद्युत नीति के उद्देश्य के अनुसार उन पावर स्टेशनों की डिजाइन ऊर्जा, जो लगातार एवं उल्लेखनीय

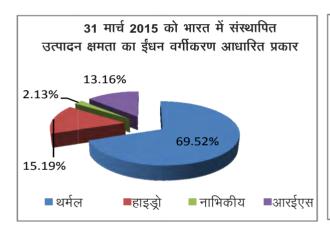
³ बीएसईएस राजधानी पॉवर लिमिटेड, बीएसईएस यमुना पॉवर लिमिटेड, उत्तर प्रदेश पॉवर कम्पनी लिमिटेड विद्युत विभाग, जे एंड के और बिहार राज्य बिजली बोर्ड।

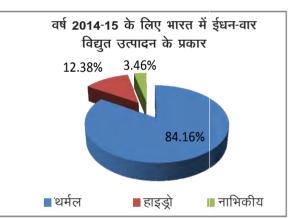
अनुषंगी ऊर्जा का उत्पादन कर रहे है, की समीक्षा सीईए दिशानिर्देशों के अनुसार करने के लिए, यदि आवश्यक हो तो, नियामक सहित अन्य एजेंसियों के साथ समन्वय सुनिश्चित करे।

सीपीएसईज

- (iii) तलछट जमाव और उसके फलस्वरूप जलाशय क्षमता में ह्रास से बचने के साथ-साथ प्रभावी बाढ प्रबंधन के लिए जलाशय प्रचालन नियम-पुस्तिका के प्रावधानों के अनुसार जलाशय स्तर के नियमन और निर्धारित फ्लिशिंग प्रचालनों को सुनिश्चित करें।
- (iv) उचित ढंग से मशीनों का वार्षिक नियोजित अनुरक्षण करें ताकि बलात आउटेज न्यूनतम किए जा सकें।
- (v) एलसीज के खोलने/नवीकृत करने और छूट अनुमत करने संबंधित पीपीएज के प्रावधानों का अनुपालन सुनिश्चित करें एवं सीईआरसी विनियमों के अनुसार विद्युत के नियमन सिहत नियमित रूप से चूककर्ता लाभार्थियों से प्राप्यों की वसूली के लिए विभिन्न संभावनाओं की खोज करें।
- (vi) बॉध स्थल के अपस्ट्रीम पर, जहाँ संभव हो, एक अग्रिम चेतावनी प्रणाली स्थापित करें तािक बॉध, विद्युत गृह और बॉध के डाउनस्ट्रीम में रहने वाली आबादी की सुरक्षा सुनिश्चित करने के लिए सुरक्षात्मक उपाय किए जा सकें।
- (vii) डीएमपीज की नियमित समीक्षा एवं अद्यतन सुनिश्चित करें तथा आपदाओं से निपटने हेतु प्रभावी ढंग से तैयार रहने के लिए पावर स्टेशनों द्वारा प्राकृतिक आपदाओं पर मॉक ड्रिल की न्यूनतम वार्षिक संख्या निर्धारित करें।
- (viii) बॉध स्थल एवं पावर हाउस पर प्रतिष्ठापित उपकरणों के कार्यचालन सहित सरंचनाओं की सुरक्षा से संबंधित सभी निरीक्षण दलों चाहे वह आंतरिक या बाहरी हो की आपत्तियों का अनुपालन शीघ्र सुनिश्चित करें।

मंत्रालय/सीपीएसईज द्वारा (ii) को छोडकर सभी सिफारिशों को सामान्य तौर पर स्वीकार किया गया था। सिफारिश (ii) के संबंध में मंत्रालय ने बताया कि यह सीईआरसी द्वारा ध्यान किए जाने वाला एक विनियामक मामला था। तथापि, लेखापरीक्षा ने महसूस किया कि राष्ट्रीय विद्युत नीति के अनुसार विस्तृत लोकहित के मद्देनजर मंत्रालय वांछित कार्य को सुनिश्चित करने के लिए विनियामक के साथ समन्वय करे।


अध्याय – I


प्रस्तावना

1.1 भारत में विद्युत क्षेत्र परिदृश्य और हाइड्रो पावर उत्पादकों की भूमिका

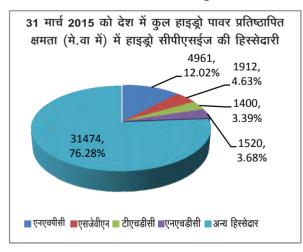
हाइड्रो पावर ऊर्जा का एक नवीकरणीय और पर्यावरण अनुकूल स्रोत है। चूंकि हाइड्रो पावर स्टेशनों में तात्कालिक प्रचालनों के लिए अन्तर्निहित सामध्य होता है, इसलिए वे उच्च मांग को पूरा करने और विद्युत प्रणाली की विश्वसनीयता को सुधारने के लिए अधिकांश अन्य उर्जा स्रोतों की अपेक्षा अधिक उपयुक्त होते हैं।

31 मार्च 2015 तक प्रतिष्ठापित क्षमता के इष्टतम उपयोग के लिए आवश्यक 60 प्रतिशत थर्मल और 40 प्रतिशत हाइड्रो के आदर्श उर्जा स्वरूप¹ के प्रति देश में कुल प्रतिष्ठापित क्षमता और कुल उत्पादन की तुलना में हाइड्रो प्रतिष्ठापित क्षमता और हाइड्रो उत्पादन का शेयर क्रमशः 15.19 प्रतिशत और 12.38 प्रतिशत भाग था। देश में प्रतिष्ठापित कुल हाइड्रो पावर क्षमता के 23.72 प्रतिशत भाग (मार्च 2015) एनएचपीसी लिमिटेड (एनएचपीसी), एसजेवीएन लिमिटेड (एसजेवीएन), टीएचडीसी इंडिया लिमिटेड (टीएचडीसी) और एनएचडीसी लिमिटेड (एनएचडीसी²) के पास है जो कि मुख्य हाइड्रो विद्युत उत्पादक है।

1.2 हाइड्रो पावर क्षेत्र सीपीएसईज का प्रोफाइल

एनएचपीसी, एसजेवीएन, टीएचडीसी और एनएचडीसी हाइड्रो पावर क्षेत्र में महत्वपूर्ण केन्द्रीय सार्वजनिक क्षेत्र उपक्रम (सीपीएसईज) हैं। इन सीपीएसईज का प्रोफाइल दिनांक 31 मार्च 2015 को विवरण तालिका 1.1 में दिया गया हैं।

^{1 2001-02} के लिए विद्युत मंत्रालय की वार्षिक रिपोर्ट के अनुसार


² एनएचडीसी लिमिटेड, एनएचपीसी लिमिटेड और मध्य प्रदेश सरकार के मध्य 51:49 अनुपात में भागीदारी वाली संयुक्त उद्यम कम्पनी है।

तालिका 1.1 निष्पादन लेखापरीक्षा के लिए चयनित सीपीएसईज का प्रोफाइल

विवरण/कंपनी का नाम	एनएचपीसी	एसजेवीएन	टीएचडीसी	एनएचडीसी
समावेश का माह/वर्ष	नवम्बर 1975	मई 1988	जुलाई 1988	अगस्त 2000
विद्युत स्टेशनों का स्थान	हिमाचल प्रदेश,जम्मू एवं कश्मीर, उत्तराखण्ड, पश्चिम बंगाल, सिक्किम और मणिपुर	हिमाचल प्रदेश	उत्तराखण्ड	मध्य प्रदेश
31 मार्च 2015 को प्रतिष्ठापित विद्युत उत्पादन क्षमता	4961.20 मे.वा.	1912 मे.वा.	1400 मे.वा.	1520 मे.वा.
विद्युत उत्पादक संयंत्रों की संख्या	18	2 ³	2	2
31 मार्च 2015 को कुल इक्विटी में केंद्र/राज्य सरकार के हिस्से का प्रतिशत	केंद्रः 85.96 (शेष सार्वजनिक, एफआईज इत्यादि)	केंद्रः 64.46 राज्यः 25.51(शेष सार्वजनिक, एफआईज इत्यादि)	केंद्रः 73.51राज्य : 26.49	एनएचपीसीः 51.08राज्यः 48.92

1.3 हाइड्रो पावर सीपीएसईज का योगदान

31 मार्च 2015 को वर्ष 2014-15 के लिए देश की कुल प्रतिष्ठापित हाइड्रो पावर उत्पादन क्षमता और कुल हाइड्रो पावर उत्पादन (केंद्र, राज्य और निजी क्षेत्र) में एनएचपीसी, एसजेवीएन, टीएचडीसी और एनएचडीसी की हिस्सेदारी निम्नानुसार थी:

31 मार्च 2015 को समाप्त छह वर्षों के दौरान समग्र देश में और निष्पादन लेखापरीक्षा के लिए चयनित प्रत्येक सीपीएसई में हाइड्रो पावर प्रतिष्ठापित क्षमता और हाइड्रो पावर उत्पादन के ब्यौरे **अनुबंध 1.1** में दिए गए है।

³ इसमें रामपुर पावर स्टेशन शामिल है जिसे मई और दिसंबर 2014 के बीच वाणिज्यिक प्रचालन के अंतर्गत रखा गया था।

1.4 सीपीएसईज की वित्तीय स्थिति

31 मार्च 2015 को समाप्त छह वर्षों के दौरान चार सीपीएसईज की वित्तीय स्थिति और कार्यकारी परिणामों को तालिका 1.2 में दर्शाया गया है।

तालिका 1.2 2009-2015 के दौरान सीपीएसईज की वित्तीय स्थिति तथा निष्पादन का वर्षवार विवरण

(₹करोड़ मे)

विवरण	वित्तीय वर्ष					
विवरण	2009-10	2010-11	2011-12	2012-13	2013-14	2014-15
एनएचपीसी	एनएचपीसी					
प्रदत्त पूंजी	12300.74	12300.74	12300.74	12300.74	11070.67	11070.67
आरक्षित निधि एवं	10972.45	12279.94	14052.79	15539.76	14996.98	17215.72
अधिशेष						
कुल राजस्व	4892.09	4932.11	6790.74	6539.43	6993.99	7663.58
निवल लाभ	2090.50	2166.67	2771.77	2348.22	978.79	2124.47
निवल संपति पर प्रतिफल⁴(%)	8.98	8.81	10.52	8.43	3.75	7.51
एसजेवीएन						
प्रदत्त पूंजी	4108.81	4136.63	4136.63	4136.63	4136.63	4136.63
आरक्षित निधि एवं	2528.25	3068.89	3685.65	4273.38	4913.72	6066.41
अधिशेष						
कुल राजस्व	1908.73	1955.82	2136.79	1916.62	2110.72	3261.10
निवल लाभ	972.74	912.13	1068.68	1052.34	1114.63	1676.75
निवल संपति पर प्रतिफल (%)	14.66	12.66	13.66	12.51	12.32	16.43
टीएचडीसी	•				•	
प्रदत्त पूंजी	3297.58	3297.58	3297.58	3443.09	3473.09	3528.88
आरक्षित निधि एवं अधिशेष	2152.98	2475.30	2864.56	3328.40	3858.15	4309.43
कुल राजस्व	1423.91	1689.27	2055.08	2026.53	2182.38	2407.93
निवल लाभ	479.95	600.48	703.83	531.38	585.32	691.15
निवल संपति पर प्रतिफल (%)	8.81	10.40	11.42	7.85	7.98	8.82
एनएचडीसी				<u> </u>	<u> </u>	
प्रदत्त पूंजी	1962.58	1962.58	1962.58	1962.58	1962.58	1962.58
आरक्षित निधि एवं अधिशेष	1231.98	1490.49	2068.96	2575.71	2699.95	3166.09
कुल राजस्व	1005.93	1025.75	1450.51	1338.19	2115.43	1548.85
निवल लाभ	212.30	304.13	646.90	575.64	1063.63	766.46
निवल संपति पर प्रतिफल (%)	6.64	8.80	16.04	12.68	22.81	14.94

लेखापरीक्षा पद्धति

2.1 लेखापरीक्षा का कार्यक्षेत्र

इस निष्पादन लेखापरीक्षा में चार हाइड्रो पावर सीपीएसईज के विद्युत स्टेशनों द्वारा अप्रैल 2009 और मार्च 2014 के बीच विद्युत उत्पादन से लेकर राजस्व के संग्रहण के कार्याकलापों पर चर्चा की गई है। उत्तराखंड में 16-17 जून 2013 को आई आकस्मिक बाढ़ की घटना के परिणामस्वरूप से लेकर आपदा प्रबंधन उपायों की पर्याप्तता को भी लेखापरीक्षा कार्यक्षेत्र में शामिल किया गया था।

2.2 लेखापरीक्षा उद्देश्य

निष्पादन लेखापरीक्षा का उद्देश्य यह निर्धारित करना था कि क्या:

- (i) हाइड्रो पावर स्टेशन परिकल्पित लक्ष्यों के अनुसार मितव्ययी रूप से और दक्षता पूर्वक विद्युत उत्पादन कर रहे थे:
- (ii) पावर स्टेशनों का अनुरक्षण मित्व्ययता एवं दक्षता को ध्यान में रखते हुए निर्धारित प्रतिमानों के अनुसार था;
- (iii) टैरिफ अधिसूचनाओं और बिलिंग, छूट की अनुमित, अधिभार लगाने और देनदारों से राशि के संग्रहण हेतु निर्धारित प्रक्रियाओं का पालन किया गया था; और
- (iv) पावर स्टेशनों में आपदा प्रबंधन हेतु तैयारी पर्याप्त थी।

2.3 लेखापरीक्षा मापदंड

निष्पादन लेखापरीक्षा के लिए लेखापरीक्षा द्वारा अपनाए गए मापदंडों में निम्न शामिल थेः (i) पावर स्टेशनों की मूल विस्तृत परियोजना रिपोर्ट (डीपीआर) और पावर स्टेशनों के समापन/प्रवर्तन में लाने की रिपोर्ट (ii) पावर स्टेशनों की प्रचालन एवं रख-रखाव नियम पुस्तक (iii) सीईए का वार्षिक रख-रखाव कैलेंडर (iv) भारतीय विद्युत ग्रिंड संहिता (आईईजीसी) विनियमावली, 2010 (v) क्षेत्रों की स्थायी समितियों, क्षेत्रीय विद्युत समितियों, तकनीकी समन्वय समितियों के कार्यवृत (vi) 2009-14 की अवधि के लिए हाइड्रो उत्पादन स्टेशनों के लिए लागू केंद्रीय विद्युत विनियामक आयोग (सीईआरसी) विनियमों में यथा निर्धारित नियामक वार्षिक संयंत्र उपलब्धता कारक (एनएपीएएफ) है (vii) सीईआरसी (टैरिफ की निबंधन एवं शर्तें) विनियमावली 2004 एवं 2009 (viii) टैरिफ याचिकाएं सीपीएसईज द्वारा दायर की गई टैरिफ समीक्षा यचिकाएं एवं यचिकाएं और सीईआरसी द्वारा जारी किए गए टैरिफ आदेश (ix) लाभार्थियों के साथ किए गए विद्युत खरीद करार (पीपीए), (x) सीपीएसईज संगठन के ज्ञापन और संगठन के अनुच्छेद (xi) सीपीएसईज के निदेशक मंडल, निदेशक समिति, और अन्य बोर्ड स्तर समितियों की बैठकों के कार्यवृत (xii) उद्योग द्वारा अपनाई गई सर्वोत्कृष्ट पद्धितयां (xiii) आपदा प्रबंधन हेतु सीईए प्रतिमान (xiv) सीपीएसईज के कार्य, खरीद नीति और प्रक्रिया (डब्ल्यूपीपीपी) (xv) सीपीएसईज द्वारा विद्युत मंत्रालय (एमओपी) के साथ किए गए वार्षिक समझौता ज्ञापन (xvi) पावर स्टेशनों की लागत लेखापरीक्षा रिपोर्ट (xvii) चयनित

⁵ सीईआरसी द्वारा संयंत्र प्रकार (अर्थात भंडारण, पोंडेज या नदी का प्रवाह), तलछ्ट समस्या, अन्य प्रचालन स्थितियों और संयंत्र की ज्ञात किमयों को ध्यान में रखते हुए प्रत्येक हाइड्रो पावर स्टेशन के संबंध में 2009-2014 की टैरिफ अविध के लिए लागू अपनी अधिसूचना में नियामक आधार पर निर्धारित किए गए संयंत्र उपलब्धता कारक (पीएएफ)। प्राप्त किया गया वास्तविक पीएएफ एनएपीएएफ से अधिक होने की स्थिति में संयंत्र प्रोत्साहन के हकदार होते तथा प्राप्त किया गया वास्तविक पीएएफ एनएपीएफ से कम होने की स्थिति में हतोत्साहन के अध्यधीन होते

पावर स्टेशनों की आपदा प्रबंधन योजनाएं (डीएमपीज) (xviii) आपदा प्रबंधन अधिनियम, 2005 (xix) बाधों के लिए आकस्मिक कार्रवाई योजना (ईएपी) पर केंद्रीय जल आयोग (सीडब्लयूसी) दिशानिर्देश, मई 2006 (xx) राज्य आपदा प्रबंधन योजनाएं (xxi) पर्यावरण प्रभाव निर्धारण (इआईए) अधिसूचना 1994।

2.4 लेखापरीक्षा कार्यप्रणाली

06 अगस्त 2014 को एनएचपीसी, एसजेवीएन, टीएचडीसी और एनएचडीसी के प्रबंधन के साथ एन्ट्री कॉन्फ्रेस का आयोजन किया गया था जिसमें कार्यक्षेत्र, उद्देश्यों, लेखापरीक्षा मापदंडों और लेखापरीक्षा नमुना पर चर्चा की गई थी। उपरोक्त चार सीपीएसईज के निगमित कार्यालयों और चयनित पावर स्टेशनों के सुसंगत अभिलेखों की जांच की गई थी और लेखापरीक्षा निष्कर्षों की पृटि करने के लिए अगस्त 2014 से दिसंबर 2014 के दौरान समय-समय पर वरिष्ठ प्रबंधन के साथ चर्चा की गई थी। डाफ्ट निष्पादन लेखापरीक्षा प्रतिवेदनों को जनवरी/फरवरी 2015 के दौरान उनकी टिप्पणियों के लिए उपरोक्त सीपीएसईज के प्रबंधन को जारी किया गया था। इन डाफ्ट प्रतिवेदनों को संबंधित प्रबंधनों के उत्तरों पर विचार करने के पश्चात अद्यतित/संशोधित किया गया था और समेकित डाफ्ट प्रतिवेदन में शामिल किया गया था। इस प्रतिवदेन को मई 2015 में इन चार सीपीएसईज के प्रबंधनों को पुनः जारी किया गया था और मई 2015 में लेखापरीक्षा निष्कर्षों पर चर्चा करने के लिए उनके साथ एक्जिट कॉन्फ्रेस का आयोजन किया गया था। एक्जिट कॉन्फ्रेस में की गई चर्चा के मद्देनजर लेखापरीक्षा निष्कर्षों/सिफारिशों में संशोधन किया गया था और संशोधित ड्राफ्ट प्रतिवेदन को जून 2015 में विद्युत मंत्रालय (एमओपी) को जारी कर दिया गया था। ड्राफ्ट प्रतिवेदन पर दिनांक 20 अगस्त 2015 को विद्युत मंत्रालय के उत्तर की प्राप्ति के बाद 25 अगस्त 2015 को विद्युत मंत्रालय और इन चार सीपीएसईज के प्रबंधनों के साथ एक एक्जिट कॉन्फ्रेस का आयोजन किया गया। सीइए के प्रतिनिधियों ने भी एक्जिट कॉन्फ्रेस में भाग लिया था जिसमें लेखापरीक्षा निष्कर्षों और प्रतिवेदन में सुधार के लिए प्रस्तावित सुझावों पर चर्चा की गई थी। विद्युत मंत्रालय के उत्तर (अगस्त 2015), एक्जिट कॉन्फ्रेस में चर्चाओं (अगस्त 2015) और प्रबंधनों/मंत्रालय से अभ्युक्तियों एवं सिफारिशों पर अगस्त/सिंतबर 2015 में प्राप्त अतिरिक्त उत्तरों पर विचार किया गया है और इन्हें इस प्रतिवेदन में यथावत समावेशित किया गया है।

2.5 लेखापरीक्षा नमूना

31 मार्च 2014 को संख्या के संबंध में 44 प्रतिशत और प्रतिष्ठापित क्षमता के संबंध में 49 प्रतिशत के प्रतिनिधित्व सिहत आठ एनएचपीसी पावर स्टेशनों के प्रतिनिधि नमूना को इन्टरेक्टिव डाटा एक्सट्रैक्शन एण्ड एनालिसिस (आइडिया) सॉफ्टवेयर का उपयोग करते हुए लिया गया था। अन्य सीपीएसईज, जिनके एक या दो पावर स्टेशन थे, के संबंध में उनके एकमात्र पावर स्टेशन या अधिक पुराने पावर स्टेशन को निष्पादन लेखापरीक्षा के उद्देश्य हेतु चयनित किया गया था (ब्यौरे अनुबंध 2.1 में)।

तालिका 2.1 प्रतिष्ठापित क्षमता सहित पावर स्टेशनों की सीपीएसई वार कुल संख्या तथा निष्पादन लेखापरीक्षा हेतु चयनित पावर स्टेशनों की संख्या और प्रतिष्ठापित क्षमता

सीपीएसई का नाम	31 मार्च 2014 को संख्या	चयनित नमूना				
	चालू पावर स्टेशनों की संख्या	प्रतिष्ठापित क्षमता (मे.वा)	पावर स्टेशनों की संख्या	प्रतिष्ठापित क्षमता (मे.वा)		
एनएचपीसी	18	4831	8º (44 प्रतिशत)	2359(49 प्रतिशत)		
एसजेवीएन	1	1500	<i>1 (100 प्रतिशत)</i> (नथपा-झाकरी)	1500(100 प्रतिशत)		
टीएचडीसी	2	1400	1(50 प्रतिशत) (टिहरी हाइड्रो)	1000 (71 प्रतिशत)		
एनएचडीसी	2	1520	1 (50 प्रतिशत) (इंदिरा सागर)	1000 (66 प्रतिशत)		
जोड़	23	9251	11 (48 प्रतिशत)	5859 (63 प्रतिशत)		

2.6 लेखापरीक्षा निष्कर्ष

लेखापरीक्षा निष्कर्षों पर निम्नलिखित शीर्षकों के अंतर्गत आगामी अध्यायो में चर्चा की गई है:

अध्याय III: क्षमता उपयोग तथा विद्युत उत्पादन

अध्याय IV: नियोजित एवं बलात आऊटेज का प्रबंधन

अध्याय V: विद्युत की बिक्री और राजस्व का संग्रहण

अध्याय VI: आपदा प्रबंधन

अध्याय VII: मॉनीटरिंग प्रणाली

अध्याय VIII: निष्कर्ष और सिफारिशें

2.7 आभार

लेखापरीक्षा, लेखापरीक्षा के निर्विध्न निष्पादन में सहायता देते हुए विद्युत मंत्रालय और एनएचपीसी, एसजेवीएन, टीएचडीसी और एनएचडीसी के प्रबंधनों द्वारा दिए गए सहयोग के लिए सराहना एवं आभार व्यक्त करती है।

[°] (i) बेरास्यूल, (ii) टनकपुर, (iii) चमेरा-1, (iv) उरी-1, (v) धोलीगंगा, (vi) तीस्ता-v, (vi) चमेरा-1Ⅱ और (viii) चुटक

क्षमता उपयोग तथा विद्युत उत्पादन

3.1 क्षमता उपयोग

3.1.1 पावर स्टेशन की प्रतिष्ठापित क्षमता विद्युत का वह अधिकतम उत्पादन होता है जिसका पूर्व निर्धारित स्थितियों के अंतर्गत उत्पादन किया जा सकता है। हाइड्रो स्टेशन के मामले में क्षमता उपयोग को निर्धारित करने वाले मुख्य कारक, 'जल प्रवाह' और 'जलाशय भंडारण विशेषता' है। तथापि, पावर स्टेशनों को हर समय उनकी पूरी क्षमता पर प्रचालित नहीं किया जाता, और आऊटपुट में विद्युत आपूर्ति एवं मांग की स्थिति के मद्देनजर पावर स्टेशनों की स्थिति के अनुसार और/या ग्रिड प्रचालक द्वारा दिए गए अनुदेशों के अनुसार अंतर आता है। 31 मार्च 2014 को समाप्त पांच वर्षों के लिए निष्पादन लेखापरीक्षा के लिए चयनित पावर स्टेशनों के क्षमता उपयोग कारक (सीयूएफ⁷) को तालिका 3 1 में देखा जा सकता है।

तालिका 3.1 2009-2014 के दौरान चयनित पावर स्टेशनों के डिजाइन, वार्षिक एवं औसत सीयूएफ (प्रतिशत)

पावर स्टेशन वार्षिक सीयुएफ प्रतिशत बिन्दुओं में डिजाईन 2009-10 से डिजाईन सीयुएफ सीयूएफ⁸ 2013-14 तक औसत के संदर्भ मे औसत 2009-10 2010-11 2011-12 2012-13 2013-14 सीयुएफ में गिरावट सीयुएफ एनएचपीसी बैरास्यूल 49.40 39.51 45.09 46.36 45.79 40.46 43.44 5.96 कोई गिरावट नहीं टनकप्र 54.78 57.08 58.29 46.53 56.35 59.14 55.48 कोई गिरावट नहीं चमेरा I 35.20 43.65 50.90 56.23 51.62 49.49 50.38 उरी I कोई गिरावट नहीं 61.52 64.28 72.30 64.31 70.56 59.96 66.28 धौली गंगा 46.27 46.23 46.23 47.17 46.31 54.50* 48.09 कोई गिरावट नहीं तीस्ता-V 50.77 57.59 58.15 58.73 57.48 51.48 55.32 2.27 चमेरा III 53.67 47.19# 46.35 46.77 6.9 चुटक 55.26 12.39# 8.82 10.61 44.65 एसजेवीएन नथपा-झाकरी कोई गिरावट नहीं 50.32 53.42 54.34 57.91 51.58 54.74 54.40 टीएचडीसी कोई गिरावट नहीं टिहरी हाइड्रो 31.93 24.17 35.57 45.48 35.41 46.35 37.40 एनएचडीसी

25.09

24.18

33.06

46.56

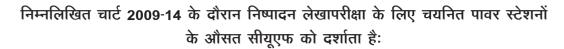
33.28

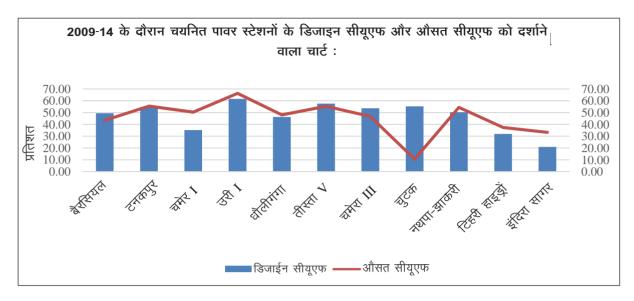
37.52

2 0.919

इंदिरा सागर

कोई गिरावट नहीं


^{*}डीजीपीएस के जलमग्न होने की तारीख (अर्थात 16 जून 2013) तक गिना गया


[#] चमेरा III पावर स्टेशन की वाणिज्यिक परिचालन तिथि (सीओडी) अर्थात जून 2012 और जुलाई 2012 तथा चुटक पावर स्टेशन की सीओडी अर्थात नवंबर तथा फरवरी 2015 से गिना गया

⁷ यह पावर स्टेशन द्वारा उत्पादित वास्तविक ऊर्जा का एक अवधि के दौरान रेटिड क्षमता पर समतुल्य उर्जा आऊटपुट के साथ अनुपात है।

⁸ रेटिड क्षमता x100 पर डिजाइन ऊर्जा/ऊर्जा आऊटपूट

^{9 2009-10} से 2013-14 के लिए डिजाइन एनर्जीज के औसत के आधार पर संगणित (अर्थात 1979 एमयू, 1901 एमयू, 1846 एमयू, 1715 एमयू और 1715 एमयू)।

उपरोक्त तालिका से यह देखा जा सकता है कि एनएचपीसी के बैरास्यूल, तीस्ता-V, चमेरा-III और चुटक पावर स्टेशनों के औसत सीयूएफ उनके संबंधित डिजाइन सीयूएफ से 2.27 से 44.65 प्रतिशत बिंदुओं तक कम थे।

लेखापरीक्षा अभ्युक्ति पर सहमित देते समय एनएचपीसी ने बताया (फरवरी/अगस्त 2015) कि सभी पावर स्टेशनों को डिजाइन सीयूएफ के संदर्भ में औसत सीयूएफ में किसी कमी से बचने की सलाह दी गई है। तथापि, एनएचपीसी ने आगे स्पष्टीकरण दिया कि

- (i) 2009-14 दौरान, बैरास्यूल और तीस्ता पावर स्टेशनों के संयंत्र उपलब्धता कारक(पीएएफ) सीईआरसी द्वारा निर्धारित किए गए 85 प्रतिशत के नियामक वार्षिक संयंत्र उपलब्धता कारक (एनएपीएएफ) के प्रति 94.5 प्रतिशत एवं 87.8 प्रतिशत थे।
- (ii) 2013-14 के दौरान चमेरा-III में कम सीयूएफ मुख्यतः इसके प्रचालन के प्रथम वर्ष के दौरान जल निर्वाहक प्रणाली के परिशोधन के लिए पावर स्टेशन के बंद किए जाने और कम जल प्रवाह के कारण था।
- (iii) बैरास्यूल के संबंध में न्यूनतर सीयूएफ कम जल अन्तर्वाह/खराब हाइड्रोलॉजी के कारण था।
- (iv) चुटक पावर स्टेशन पर सीयूएफ काफी कम था क्योंकि इसे ग्रिड के साथ नहीं जोड़ा गया था। यह कारगिल क्षेत्र के पृथक लोड पर चलता है। लोड बाधाओं के कारण इसका क्षमता उपयोग कम था। चुटक पावर स्टेशन में यूनिटों का बार-बार ब्रेकडाऊन इसके दीर्घकालिक आंशिक-लोड प्रचालन और संबंधित उच्च स्पंदन इत्यादि के परिणामस्वरूप था।

इस उत्तर को इन तथ्यों के मद्देनजर देखा जाए किः

(i) एनएपीएएफ टैरिफ विनियमन हेतु सीईआरसी द्वारा निर्धारित किया गया संयंत्र उपलब्धता कारक है जबिक आरंभिक डिजाईन सीयूएफ के साथ क्षमता उपयोग की तुलना की जा रही है। एनएपीएएफ संयंत्र के स्थान, प्रकार (अर्थात पॉन्डेज, आरओआर और जलाशय), तलछट स्थिति पर आधारित है और इसे सामान्यतः पीएएफ से कम पर निर्धारित किया जाता है। इसलिए, एनएपीएएफ के साथ सीयूएफ की तुलना उचित नहीं है।

- (ii) चमेरा-III में, 2013-14 के तीन माह के दौरान जल अन्तर्वाह डिजाईन अन्तर्वाह से अधिक था। छह माह में जल अन्तर्वाह डिजाइन अन्तर्वाह से कम था, किन्तु डिजाइन ऊर्जा के संबंध में वास्तविक उत्पादन में कमी का अनुपात अधिक था। केवल तीन माह उत्पादन में कमी जल अन्तर्वाह में कमी के समान अनुपात में थी। वास्तव में, 2013-14 में ही 1387 घंटें बलात आऊटेज था जिसके परिणामस्वरूप चमेरा-III में क्षमता उपयोग कम हुआ।
- (iii) बैरासियुल में 60 महीनों में से 37 के दौरान जल अन्तर्वाह अभिकल्पित अन्तर्वाह से भी अधिक था।
- (iv) चुटक के संबंध में एक्जिट कांफ्रेंस के दौरान लेखापरीक्षा द्वारा पूछा गया था कि क्या मांग घटक और राष्ट्रीय ग्रिड को संयोजकता प्रदान करने की आवश्यकता का ध्यान डीपीआर तैयार करते समय रखा गया था। इस पर एमओपी ने एनएचपीसी से लेखापरीक्षा को इस पर विवरण प्रस्तुत करने को कहा, जो प्रतीक्षित था।

एमओपी ने कहा (अगस्त 2015) कि एनएचपीसी को परियोजना टीम को अभिकल्प क्षमता के कम उपयोग से बचना सुनिश्चित करने के निर्देश देने चाहिये।

3.1.2 टीएचडीसी की टिहरी हाईड्रो पावर स्टेशन (टीएचपीएस) में संस्थापित क्षमता का उपयोग

टीएचपीएस, ईएल 835मी. के उच्चतम जलाशय स्तर (एमआरएल) साहित ईएल¹० 830मी के पूर्ण जलाशय स्तर (एफआरएल) के लिये बहुउद्देशीय योजना¹¹ के रूप में बनाया गया था। भारत सरकार (जीओआई) के निर्देश के अनुसार, राज्य सरकार, पूर्ण पुनर्वास कार्यक्रम के लिये उत्तरदायी थी। पुनर्वास के लिये निधि टीएचडीसी द्वारा उपलब्ध कराई जानी थी। तदनुसार, ईएल 835मी स्तर के एमआरएल तक, परिवारों का पुनर्वास टीएचडीसी द्वारा प्रदान की गई निधि से राज्य सरकार द्वारा किया गया था। तथापि, टीएचडीसी को ईएल 825मी से अधिक जलाशय भरने की अनुमित अभी तक नहीं दी गई है। यह इस तथ्य के बावजूद था कि टीएचडीसी ने अभी तक (जनवरी 2015) ईएल 835मी. (अधिकतम जलाशय स्तर) तक परिवारों के पुनर्वास के लिये अपेक्षित ₹ 972.97 करोड़ का भुगतान किया।

एमओपी ने कहा (अगस्त 2015) कि राज्य सरकार का निर्णय क्षेत्र की सामाजिक-आर्थिक स्थिति के आधार पर प्रतीत होता है और मामले को जल संसाधन मंत्रालय के माध्यम से उत्तराखंड सरकार के समक्ष उठाया जाना चाहिये चूँकि मुख्य हानि उ.प्र. में सिंचाई और गंगा की सफाई में थी। इसके अतिरिक्त, एमओपी एक्जिट कांफ्रेंस (अगस्त 2015) में सहमत हुआ कि यह टीएचडीसी की ओर से मामले में हस्तक्षेप करेगा।

3.1.3 अभिकल्प ऊर्जा की समीक्षा

सीईआरसी के दिनांक 8 दिसम्बर 2000 के आदेश में अन्य बातों के साथ-साथ प्रावधान हैं कि पावर स्टेशन में अभिकल्प ऊर्जा की समीक्षा सीईए द्वारा तब की जानी चाहिये जब अपस्ट्रीम या रनऑफ में जल के उपयोग में परिवर्तन के बारे में कोई भी विशेष जानकारी सीईए के ध्यान में लाई जाती थी। हाइड्रो पावर स्टेशन में अभिकल्प ऊर्जा के संशोधन के प्रस्ताव प्रस्तुत करने के लिये सीईए के दिशानिर्देशों में यह प्रावधान है कि अभिकल्प ऊर्जा की समीक्षा सीईआरसी आदेशों के अनुसार प्रत्येक पांच वर्ष के बाद की जानी चाहिये।

¹⁰ भौगोलिक स्थल की ऊंचाई से तात्पर्य निर्धारित संदर्भ बिन्दु की तुलन में उसकी ऊंचाई की उच्च्तर अथवा अंतर स्थिति से है।

¹¹ कर्जा उत्पादन के अलावा, उसका उद्देश्य दिल्ली को पेय जल के साथ-साथ उत्तर प्रदेश को खेती के लिये जल की आपूर्ति करना है।

सीईआरसी के विनियमानुसार अतः हाईड्रो पॉवर स्टेशन की वास्तविक डिजाईन ऊर्जा का नियतन आवश्यक है क्योंकि वह टैरिफ तय करने तथा हाईड्रोपॉवर स्टेशन द्वारा लागत वसूले जाने का आधार होती है। हाइड्रोपावर स्टेशन के कुल वार्षिक प्रभार अभिकल्प ऊर्जा के स्तर तक ऊर्जा के उत्पादन द्वारा शुल्क के माध्यम से वसूल किया जाता है, अभिकल्प ऊर्जा के अतिरिक्त पावर स्टेशन द्वारा उत्पादित गौण ऊर्जा पावर स्टेशन की अतिरिक्त आय होगी यदि अभिकलप ऊर्जा की समीक्षा नहीं की जाती है तथा यह पॉवर स्टेशन की वास्तविक उत्पादन क्षमता से निचले स्तर पर तय हो तो इससे अतिरिक्त गौण ऊर्जा का उत्पादन होगा जिसके परिणामस्वरूप अंतिम उपभोगता पर बोझ पड़ेगा। क्योंकि यदि अभिकल्प ऊर्जा को संशोधित किया जाए तो गौण ऊर्जा वार्षिक प्रभार में ही शामिल हो जाएगी।

लेखापरीक्षा जांच से पता चला कि 1994-95 में संयंत्र चालू करने से 20 वर्षों के दौरान चमेरा-I का वास्तविक उत्पादन, अभिकल्प ऊर्जा से 13 से 60 प्रतिशत तक अधिक था। पिछले 20 वर्षों में लगातार अभिकल्प ऊर्जा की तुलना में वास्तविक उत्पादन में महत्वपूर्ण और निरंतर भिन्नता के बावजूद, चमेरा-I पावर स्टेशन में अभिकल्प ऊर्जा की उपरोक्त सीईआरसी आदेशों और सीईए दिशानिर्देशों के संदर्भ में एनएचपीसी द्वारा संमीक्षा नहीं की गई थी। इसलिये चमेरा-I पावर स्टेशन ने 3592 एमयू अतिरिक्त ऊर्जा की बिक्री के माध्यम से 2009-14 की अवधि के दौरान ₹ 274.98 करोड़¹³ अर्जित किये। अंतिम प्रयोक्ता पर फलस्वरूप ₹ 274.98 करोड़ तक का बोझ¹⁴ पड़ा; जिससे राष्ट्रीय विद्युत नीति का उपभोक्ताओं के लाभ को उत्पादकों और निवेशकों द्वारा लागत की उचित वसूली से संतुलित करने का उद्देश्य पूर्ण नहीं हुआ।

सीईए ने कहा (अगस्त 2015) कि उनके द्वारा दिशानिर्देश अभिकल्प ऊर्जा समीक्षा के लिये प्रस्ताव प्रस्तुत करने के लिये मार्गदर्शन देने हेतु बनाये गये हैं। अभिकल्प ऊर्जा में कोई भी कमी/वृद्धि केवल समीक्षा होने के बाद ही पता चलेगी।

एमओपी ने कहा (अगस्त 2015) कि सीपीएसई द्वारा की गई सूचना अनुसार, अतिरिक्त ऊर्जा 90 पैसे/यूनिट की बहुत कमतर दर पर बेची जा रही थी जो अतिरिक्त ऊर्जा की लागत की केवल प्रतिपूर्ति थी। एमओपी एक्जिट कांफ्रेंस (अगस्त 2015) में इस पर भी सहमत हुआ कि यदि सीपीएसई अधिक पैसे अर्जित कर रहा है, तो उन्हें उसका लाभ ग्राहकों को देना चाहिये क्योंकि उन्हें अनुचित लाभ लेने की अनुमित नहीं दी जा सकती। तथापि, एमओपी को महसूस हुआ कि यह नियामक मुद्दा था और नियामक से सीईए को संदर्भ किया जा सकता था।

एमओपी के उत्तर को इस तथ्य के प्रति देखा जाना चाहियेः

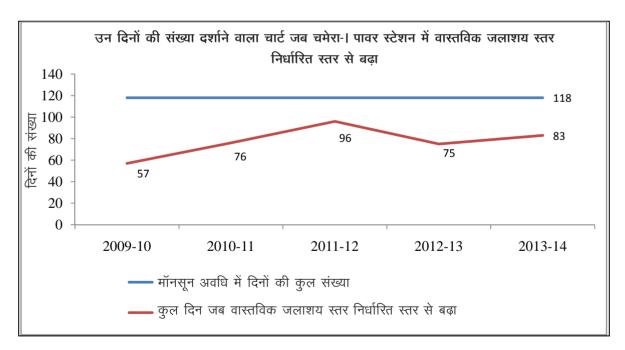
(i) अभिकल्प ऊर्जा तक क्षमता प्रभार और ऊर्जा प्रभार की गणना करते समय विद्युत उत्पादन में शामिल पूर्ण लागत को ध्यान में रखा गया था। इस प्रकार, अतिरिक्त ऊर्जा की बिक्री द्वारा कोई

¹² अभिकलप ऊर्जा से अधिक उत्पादित ऊर्जा।

¹³ 2009-10 से 2013-14 में अतिरिक्त ऊर्जा उत्पादन को गुणा करके निकाला गया, संबंधित वित्तीय वर्ष की ऊर्जा प्रभार दर द्वारा ₹ 0.80 प्रति युनिट तक गुणा करके है।

¹⁴ उच्च अभिकल्प ऊर्जा के मामले में, कम या कोई अतिरिक्त ऊर्जा नहीं होगी और ऊर्जा प्रभार दर कम होगे। 2009-14 की अवधि के लिये लागू सीईआरसी अधिसूचना के अनुसार, ऊर्जा प्रभार दर = वार्षिक निर्धारित प्रभार x 0.5 x 10 / { अभिकल्प ऊर्जा x (100 अतिरिक्त खपत का प्रतिशत) x (100 – गृह राज्य को मुफ्त ऊर्जा का प्रतिशत)}

भी वसूली अनुचित लाभ के रूप में थी, विशेष रूप से तब जबिक किसी भी वर्ष में अभिकल्प ऊर्जा के संदर्भ में उत्पादन की कमी के मामले में, उसे अनुवर्ती वर्ष में लाभार्थियों द्वारा सुधारा जाता था।


(ii) इसके अतिरिक्त, राष्ट्रीय विद्युत नीति में "उपभोक्ताओं के लाभ को और जनरेटर और निवेशको द्वारा लागत की उचित वसूली के साथ संतुलित करने" के लिये प्रावधान है। इसलिए, व्यापक सार्वजनिक हित में, वांछित कार्यवाही सुनिश्चित करने हेतु एमओपी के लिये नियामक सहित अन्य एजेंसियों के साथ समन्वयन वांछित था।

3.1.4 अपर्याप्त जलाशय फ्लिशंग और फलस्वरूप जलाशय क्षमता में कमी

इनटेक गेट में गाद को रोकने का सर्वोच्च और अत्यधिक सस्ता तरीका जलाशय में गाद न जमा होने देना है। यह (i) मॉनसून के दौरान निर्धारित स्तर पर जलाशय में जल रखकर/या (ii) जलाशय के प्रकार पर निर्भर निर्धारित तरीको के अनुसार नियमित फ्लिशंग परिचालन करके प्राप्त किया जा सकता है। उपरोक्त शर्तों का पालन न करने से न केवल जलाशय और पावर स्टेशन का उपयोगिता काल कम होगा बल्कि बाढ़ प्रबंधन भी मृश्किल होगा।

एनएचपीसी के चमेरा-I और उरी-I पावर स्टेशन और टीएचडीसी के टिहरी पावर स्टेशन के जलाशय प्रचालन मैनुअल (आरओएम) में जलाशय स्तर बनाये रखने का गाद से बचने के तंत्र के रूप में प्रावधान है। अन्य हाइड्रों पावर स्टेशन के आरओएम में गाद इकट्ठा होने से बचने के लिये मॉनसून के मौसम के दौरान जलाशय स्तर बनाये रखने के अलावा फ्लिशिंग प्रचालन हेतु विशेष आवश्यकता के लिये प्रावधान है।

लेखापरीक्षा ने देखा कि चमेरा-I पावर स्टेशन ने 2009-14 मॉनसून मौसम के दौरान निर्धारित जलाशय स्तर¹⁵ नहीं बनाये रखा जैसा नीचे चार्ट में विवरण है:

¹⁵ 15 से 30 जून-757 मीटर, 1 जुलाई से 15 सितम्बर − 750 मीटर, 16 से 30 सितम्बर − 755 मीटर और 1 से 10 अक्टूबर −757 मीटर

निर्धारित जलाशय स्तर न बनाए रखने के कारण 2008 में मॉनसून के बाद से 2013 में मॉनसून के बाद की अविध के दौरान चमेरा-। की सकल और मौजूदा जलाशय क्षमता क्रमशः 15 प्रतिशत और 13 प्रतिशत कम हुई।

एमओपी/एनएचपीसी ने इस पर कोई टिप्पणी नहीं की।

इसके अतिरिक्त, फ्लिशंग प्रचालन भी निर्धारित मानक के अनुसार नहीं किये गये थे। तालिका 3.2 उनके संबंधित आरओएम में निर्धारित संख्या की तुलना में एनएचपीसी के चयनित पावर स्टेशन द्वारा निष्पादित फ्लिशंग प्रचालन की वास्तविक संख्या दर्शाती है।

तालिका 3.2 आरओएम में निर्धारित फ्लशिंग प्रचालन और एनएचपीसी के पावर स्टेशन द्वारा वास्तविक रूप से किया गया प्रचालन।

पावर स्टेशन	आरओएम में निर्धारित	वास्तव में किये गये फ्लिशंग प्रचालन की संख्या					
	फ्लशिंग प्रचालन की संख्या	2009- 10	2010-11	2011-12	2012-13	2013-14	
वैरास्यूल	5	2	7	9	9	11	
टनकपुर	4	4	2	3	4	4	
धौलीगंगा	8	6	6	6	3	0	
तीस्ता-∨	5	5	5	7	7	6	
चमेरा ॥।	4	_	_	_	2	1	
चुटक	5	_	_	_	0	0	

3.1.5 एनएचपीसी पावर स्टेशनों में फ्लिशिंग प्रचालनः

- (i) डीजीपीएस में दर्शाये गये अपर्याप्त फ्लिशिंग प्रचालन के अलावा मॉनसून मौसम के दौरान जलाशय में अधिकतम जल स्तर (प्रतिवर्ष 137 दिन) 2009-13 के दौरान क्रमशः 4, 27, 22 और 49 दिनों में 1340 मीटर के निर्धारित स्तर के प्रति 1340 और 1345 मीटर के बीच रखा गया था जिसके कारण 2009-13 के दौरान जलाशय की सकल और मौजूदा भंडारण की क्षमता क्रमशः 5.9 और 3.9 प्रतिशत तक कम हुई।
- (ii) चमेरा--III पावर स्टेशन के प्रचालन के पहले वर्ष (2012-13) में, जलाशय की सकल और मौजूदा क्षमता उसके डीपीआर में बताई गई सकल और मौजूदा क्षमता के संदर्भ में 18 प्रतिशत और 7 प्रतिशत कम थी।
- (iii) शेष पावर स्टेशन (तीस्ता V, चुटक और टनकपुर) का 2009-14 की अवधि के दौरान नियमित रूप से आकलन नहीं हो रहा था। तदनुसार, लेखापरीक्षा इन पावर स्टेशनों की जलाशय क्षमता पर फ्लिशिंग प्रचालन के प्रभाव का आकलन करने में सक्षम नहीं थी।

एनएचपीसी ने कहा (फरवरी 2015) कि चमेरा-III पावर स्टेशन में फ्लिशिंग चमेरा-II पावर स्टेशन के साथ मिलकर की गई थी जिसके लिये दोनों पावर स्टेशनों द्वारा उत्तरीय क्षेत्र भार वितरण केन्द्र (एनआरएलडीसी) और राज्य प्राधिकरणों से अनुमित प्राप्त की जानी थी।

उत्तर को तथ्य के प्रति देखा जाना चाहिये कि चमेरा-III में एनआरएलडीसी द्वारा फ्लिशिंग प्रचालन की अनुमित न देने के सहायक दस्तावेज इस संबंध में विशेष अनुरोध के बावजूद भी प्रस्तुत नहीं किये गये थे।

3.1.6 एसजेवीएन के नाथपा झाकरी पॉवर स्टेशन में फ्लिशिंग प्रचालन

एसजेवीएन के नाथपा झाकरी पॉवर स्टेशन में न तो आरओएम में फ्लिशिंग की आवृत्ति निर्धारित थी और न ही जलाशय क्षमता की मॉनसून के बाद आंकलन की कोई प्रणाली बनी थी। उचित प्रणाली के अभाव में, लेखापरीक्षा एनजेएचपीएस द्वारा किये गये फ्लिशिंग प्रचालन की पर्याप्तता और जलाशय क्षमता पर परिणामी प्रभाव, यदि कोई है, को निर्धारित करने में सक्षम नहीं थी।

एसजेवीएन ने कहा (जून 2015) कि 100 प्रतिशत गाद रिजर्वायर फ्लिशंग के दौरान हटा दी गई थी।

तथापि, उत्तर के समर्थन में कोई भी दस्तावेजी साक्ष्य प्रस्तुत नहीं किये गये थे और अवसादन निर्धारण अध्ययन मॉनसून के बाद नहीं किया गया था जिसके बिना ऐसे प्रचालन की प्रभावकारिता का निर्धारण संभव नहीं था।

सीईए ने कहा (अगस्त 2015) कि संबंधित इकाईयों को इस पहलू का ध्यान रखने के लिये निर्धारित प्रतिमानों का पालन करना आवश्यक है।

एमओपी ने कहा, (अगस्त 2015) कि एसजेवीएन को जलाशय की फ्लिशिंग को व्यवस्थित करने और अपने आरओएम में सम्मिलित करने की सलाह दी गई है।

3.2 पावर स्टेशन में सहायक ऊर्जा खपत

दिसम्बर 2000 के सीईआरसी आदेश में सहायक उर्जा खपत¹⁶ और स्थिर एक्साईटेशन¹⁷ सिहत भूमिगत हाइड्रो पावर स्टेशन के मामले में रूपांतर हानि और ऊर्जा उत्पादन के क्रमशः 1.2 प्रतिशत और 1.0 प्रतिशत के रूप में स्थिर एक्साईटेशन सिहत सतह पर पावर स्टेशन के लिये प्रतिमान निर्धारित हैं। निष्पादन लेखापरीक्षा के लिये चयनित 11 हाइड्रो पावर स्टेशनों में से, आठ पावर स्टेशन भूमिगत हैं और तीन पावर स्टेशन (अर्थात बैरास्यूल, टनकपुर और इंदिरा सागर) सतही पावर स्टेशन है।

बैरास्युल और टनकपुर पावर स्टेशन में सहायक ऊर्जा खपत नियामक सहायक ऊर्जा खपत से लगातार बढ रही थी और वास्तविक सहायक ऊर्जा के खपत प्रतिमान 31 मार्च 2014 को समाप्त पिछले पांच वर्षों के दौरान क्रमशः 23.43 मिलयन यूनिट (एमयू) और 6.31 एमयू बढ़े।

¹⁶सहायक ऊर्जा खपत का अर्थ है रूपांतर हानि सहित उत्पादन स्टेशन के सहायक ऊर्जा उपकरणों जैसे उत्पादन स्टेशन के स्विचयार्ड और उत्पादन स्टेशन के अंदर संयंत्र और मशीनरी के प्रचालन के लिये प्रयोग किये जा रहें उपकरणों द्वारा ऊर्जा खपत की मात्रा.

¹⁷विद्युत प्रवाह के माध्यम से चुबंकीय क्षेत्र उत्पन्न करने की प्रक्रिया एक्सोइटेशन कहलाती है।

एनएचपीसी ने कहा (अक्टूबर 2014) कि टनकपुर पावर स्टेशन 1992 अर्थात 22 वर्ष पूर्व चालू किया गया था। इस प्रकार ट्रांसफार्मर, मोटर, पंप और अन्य इलैक्ट्रिकल उपकरण जैसे पुराने बिजली उपकरणों की क्षमता का सहायक ऊर्जा खपत पर प्रभाव था। एनएचपीसी ने इसके अतिरिक्त कहा (फरवरी 2015) कि उच्चतर सहायक ऊर्जा खपत वाले पावर स्टेशनों, पावर स्टेशन द्वारा शुरूआती उपयोगिता काल पूर्ण कर लेने पर एक-एक करके नवीकरण और आधुनिकीकरण कार्यक्रम के माध्यम से ध्यान दिया जायेगा।

उत्तर पर इस तथ्य के प्रति ध्यान दिया जाना चाहिये कि एनएचपीसी ने चरणबद्ध तरीके से अपने पावर स्टेशनों के नवीकरण और आधुनिकीकरण करने के लिये कोई भी दीर्घ कालिक योजना (फरवरी 2015) नहीं बनाई।

अध्याय - IV

नियोजित एवं बलात आऊटेज का प्रबन्धन

हाइड्रो सीपीएसईज के मुख्य उद्देश्यों में एक उद्देश्य पावर स्टेशन का संचालन एवं अनुरक्षण अधिकतम दक्षता के साथ करना है। इसे प्रभावी निवारक अनुरक्षण तथा किसी आऊटेज की स्थिति में उत्पादक इकाईयों के डाउनटाईम को न्यूनतम करने के माध्यम से प्राप्त किया जा सकता है।

4.1 हाइड्रो पावर स्टेशनों में आऊटेज का वर्गीकरण

एक हाइड्रो पावर स्टेशन में तीन कारणों से आऊटेज होता हैः (i) नियोजित¹³, (ii) बलात¹³ (iii) विविध № इनमें से, विविध आऊटेज मशीनों की उपलब्धता को प्रभावित नहीं करता।

4.2 नियोजित आऊटेज

उत्पादक इकाईयों के नियोजित आऊटेज को हाइड्रो सीपीएसईज द्वारा वार्षिक/प्रमुख मरम्मत अथवा मासिक, साप्ताहिक नियमित जॉच हेतू किया जाता है। लेखापरीक्षा ने एनएचपीसी के पावर स्टेशनों द्वारा की जाने वाली वार्षिक योजना/प्रमुख मरम्मत में निम्नलिखित अपर्याप्ततॉए पाई:

- (i) पावर स्टेशनों की विभिन्न प्रणालियों में ज्ञात किमयाँ इकाईयों की नियमित वार्षिक नियोजित मरम्मत के दौरान निरन्तर अनसुलझी रह रहीं थीं जिसके परिणामस्वरूप अनुवर्ती बलात आऊटेज एवं विद्युत उत्पादन की हानि हुई;
- (ii) नियत वार्षिक अनुरक्षण अवधि के दौरान नये अथवा मरम्मत किये गए भागों की विलम्बित प्राप्ति के परिणामस्वरूप भागों के प्रतिस्थापन के लिए अनुवर्त्ती अतिरिक्त आऊटेज हुआ।

पावर स्टेशनों ने उपरोक्त कारणों से अनुवर्त्ती परिहार्य बलात आऊटेजों के कारण 2006 से 2014 के दौरान विद्युतउत्पादन की 35.97 मीलियन इकाईयों की हानि वहन की।

एनएचपीसी ने बताया (अगस्त 2015) कि सभी पावर स्टेशनों को वार्षिक मरम्मत से पहले अतिरिक्त कलपुर्जो की उपंलब्धता सुनिश्चित करने तथा वार्षिक नियोजित मरम्मत के दौरान पाई गई किमयों को ठीक करने की सलाह दी गई थी। प्रबन्धन के उत्तर के साथ विस्तृत लेखापरीक्षा आपित्तयाँ तथा इस पर लेखापरीक्षा की अनुवर्ती टिप्पणियाँ अनुबन्ध 4.1 में दर्शाये गए हैं।

4.2.1 अनुरक्षण कार्य हेतु दिए गए संविदाएं

मरम्मत कार्यो हेतू प्रदान की गई संविदाओं की लेखापरीक्षा पर पावर स्टेशन वार आपत्तियों का विवरण नीचे दिया गया है:

4.2.1.1 एनएचपीसी का धौलीगंगा पॉवर स्टेश्न

धौलीगंगा पॉवर स्टेशन (डिजीपीएस) में मरम्मत कार्यो से संबंधित अभिलेखों की समीक्षा से खरीद योजना में कमियों का पता चला जिसके कारण 26 चयनित मामलों में से 7 में (ब्योरे अनुबन्ध 4.2)

¹⁸ ओ एवं एम नियम पुस्तिका के अनुसार वार्षिक/प्रमुख मरम्मत अथवा मासिक, साप्ताहिक नियमित जाँच के लिए।

¹⁹ उपस्कर के अनुचित संचालन के कारण मशीन में अचानक खराबी के कारण।

²⁰ जब मशीन संचालन योग्य हो परन्तु कुछ कारकों जैसे कम जलाशय स्तर/खराब अन्तर्वाह, ट्रॉसिमशन लाईन खराबी/ बाधाओं, अत्यधिक वीडिंग/ गाद, प्रणाली मांग के कम/ना होने, न्यून शीर्ष/अत्यधिक उच्च टेल जल स्तर, सिचाई की माँग ना होने, ग्रिड बाधा/ विफलता, रिजर्व शटडाऊन/स्पिरिंग रिजर्व के कारण प्रचालित नहीं की जा सकती।

संविदाएँ या तो वित्तीय वर्ष के अंत में अथवा वित्तीय वर्ष की समाप्ति के पश्चात की गई थीं। जिसमें उपस्कर/कलपुर्जे मूल रूप से खरीदे जाने के लिए नियोजित थे, में सात मामलों में से दो (अनुबन्ध 4.2 की क्रम सं. 2 एवं 3 की मदें) में खरीद संबंधित निर्धारित आपूर्ति तिथि से क्रमशः 10.5 महीने तथा पाँच महीने तक विलम्ब से हुई थी जो मुख्यतः आपूर्तिकर्ताओं के साथ आगे की कार्यवाही न करने लाभ प्रबन्धन द्वारा प्रेषण-पूर्व निरीक्षण के विलम्ब के कारण था जिसने उस उद्देशय को विफल कर दिया जिसके लिए ये कलपुर्जे (महत्वपूर्ण कलपुर्जे) खरीदे जा रहे थे।

एनएचपीसी ने खरीद में विलम्ब के लिए (i) संशोधित बजट अनुमान (आरबीई) के अनुमोदन की देरी से प्राप्ति एवं (ii) डीजीपीएस के अत्यधिक दूरस्थ स्थान पर स्थित होने के कारण आपूर्ति कर्त्ता/ विनिर्माताओं की खराब प्रतिक्रिया, जिसके लिए निविदा को कई बार विस्तारित करना पड़ा था, को कारण बताया (नवम्बर 2014)।

उत्तर को इस तथ्य के प्रति देखा जाना है कि आरबीई अनुमोदन की देरी से प्राप्ति के कारण विलम्ब एनएचपीसी का आन्तरिक मामला था, अतः नियंत्रणीय था। इसके अतिरिक्त अनुबंध 4.2 में बताए गए सात मामलों में से केवल एक मामले (अनुबंध 4.2 की क्र.स.7 पर) में कम प्रतिक्रिया के कारण निविदा प्रस्तुतिकरण की तिथि को बढाना पड़ा था।

तथापि, एनएचपीसी ने आश्वासन दिया (अगस्त 2015) कि प्रक्रियात्मक विलम्बों से बचने के प्रयास किये जाएगें।

4.2.1.2 एनएचपीसी का टनकपुर पॉवर स्टेशन

29 चयनित मामलों में से 8 (विवरण अनुबन्ध 4.3 में) में टनकपुर पॉवर स्टेशन द्वारा सामग्रियों की खरीद में विलम्ब मुख्यतः प्रस्ताव के प्रारंभ करने (दो मामले यथा अनुबन्ध 4.3 की क्रम सं. 2 एवं 6) तथा संविदा प्रदान करने की प्रक्रिया (अनुबन्ध 4.3 की क्रम सं. 1 से 6 पर छह मामले) में विलम्बों के कारण हुआ था, जिसे प्रबन्धन द्वारा नियंत्रित करना संभव था। टीपीएस ने एनएचपीसी अधिप्रप्ति नियम पुस्तिका में निर्धारित चार से सात माह के प्रति कार्य प्रदान करने की प्रक्रिया में 12 से 30 माह लिए थे।

एनएचपीसी ने लेखापरीक्षा आपत्तियाँ नोट की तथा आश्वासन दिया (अगस्त 2015) कि प्रक्रियात्मक विलम्बों से बचने के प्रयास किये जाएगें।

4.3 बलात आऊटेज

- 4.3.1 हाइड्रो पावर स्टेशनों के लिए 'परिचालन प्रतिमानों' के मामले में दिसम्बर 2000 में सीईआरसी द्वारा निर्धारित सिद्धान्त के अनुसार,
 - (i) मानसून के दौरान सभी मशीनें सभी प्रकार के संयंत्रों के लिए 24 घण्टे उपलब्ध होनी आवश्यक थी तथा
 - (ii) सूखे मौसम के दौरान, नदी प्रवाह आधारित संयंत्र (बिना पोण्डेज) का प्रचालन उस सीमा तक आवश्यक है कि पानी का बिखराव न हो। पोण्डेज सुविधाओं वाले संयंत्रों में सभी मशीनों द्वारा प्रतिदिन कम से कम तीन घण्टे के लिए अधिकतम क्षमता उपलब्ध कराना आवश्यक है।

उपरोक्त प्रतिमानों का तात्पर्य है कि मानसून अवधि के दौरान कोई आऊटेज नहीं होना चाहिए तथा बलात आऊटेज के कारण पानी का बिखराव नहीं होना चाहिए।

हालॉकि, लेखापरीक्षा ने देखा कि

(i) सीपीएसईज के पावर स्टेशनों की मशीनों ने 2009-14 के मानसून अवधि के दौरान कुल 9871 घण्टों का बलात आऊटेज वहन किया जैसा कि तालिका 4.1 में ब्यौरा दिया गया हैं।

तालिका 4.1 पॉवर स्टेशन-वार मानसून अवधि के दौरान बलात् आउटेज

पावर स्टेशन		संबंधित वर्ष के मानसून के दौरान बलात आउटेज (घण्टे)					
	2009-10	2010-11	2011-12	2012-13	2013-14	कुल	
एनएचपीसी							
बैरास्यूल	523	372	274	353	0	1522	
टनकपुर	279	93	213	19	461	1065	
चमेरा ।	533	60	1	349	27	970	
उरी ।	0	41	9	79	989	1118	
धौलीगंगा	174	489	205	199	17	1084	
तीस्ता v	49	117	34	226	23	449	
चमेरा ॥।	-	-	-	356	108	464	
चुटक	-	-	-	0	2085	2085	
एसजेवीएन							
एनजेएचपीएस	147	10	8	0	140	305	
टीएचडीसी							
टीहरी हाइड्रो	12	27	193	14	47	293	
एनएचडीसी							
इन्दिरा सागर	0	0	8	469	39	516	
जोड						9871	

निष्पादन लेखापरीक्षा हेतू चयनित पावर स्टेशनों के मशीन आऊटेज डाटा की समीक्षा से पता चला कि (i) 31 मार्च 2014 को समाप्त होने वाले पिछले पाँच वर्षों के दौरान इन पावर स्टेशनों में मानसून काल के दौरान बलात आऊटेज 293 घण्टे (टीएचडीसी के टिहरी हाइड्रो पावर स्टेशन में) से 2085 घण्टे (एनएचपीसी के चुटक पावर स्टेशन में) तक था। यह देखा गया था कि 2009-14 के मानसून काल में बलात आऊटेज के कारण सीपीएसईज के पावर स्टेशनों ने ₹0.80 प्रति यूनिट की दर से संगणित ₹27.36 करोड मूल्य की 341.99 मीलियन इकाईयों की उत्पादन हानि वहन की थी।

(ii) सूखे मौसम के दौरान भी पावर स्टेशनों ने बलात आऊटेज वहन किया जिसके परिणामस्वरूप 6165.86 क्यूमेक जल का बिखराव हुआ तथा परिणामतः (₹0.80 प्रति इकाई की दर से संगणित) ₹12.82 करोड मूल्य की 160.22 मीलियन इकाईयों की उत्पादन हानि हुई जैसा कि तालिका 4.2 में ब्यौरा दिया गया है।

तालिका 4.2 गैर मानसून काल में पावर स्टेशन – वार बलात आऊटेज, ऐसे आऊटेज के कारण बिखरे जल की मात्रा तथा अनुमानित उत्पादन हानि

पावर स्टेशन का नाम	आऊटेज घण्टों में	उत्पादन हानि (एमयूज में)	राशि (₹ करोड में)	बलात आऊटेज के कारण बिखरा जल क्यूमेक में
बैरास्यूल	8:53	0.44	0.04	8.881
टनकपुर	256:48	2.02	0.16	505.804
तीस्ता-V	1199:47	120.02	9.60	2753.285
उरी-I	93:05	5.56	0.45	228.742
चुटक	2929:11	20.89	1.67	1906.730
एनजेएचपीएस	1167:32	11.30	0.90	762.413
जोड	5655:16	160.22	12.82	6165.86

जहाँ एनएचपीसी ने कोई टिप्पणी प्रस्तुत नहीं की, वहीं टीएचडीसी ने बताया (दिसम्बर 2014) कि वह केवल आऊटेज की घटना को कम कर सकता था, उन्हें पूरी तरह से खत्म नहीं कर सकता। जल सरकार द्वारा अनुमत जलाशय स्तर को बनाए रखने के लिए छोडा गया था।

टीएचडीसी के उत्तर को इस तथ्य के प्रति देखा जाना है कि ऊपर दर्शाये गए मामले केवल बलात आऊटेज से संबंधित थे जो जल बिखाव के साथ एक ही समय पर हुए थे। यद्यपि सरकार द्वारा अनुमत रिजरवायर स्तर को बनाए रखने के लिए जल छोड़ना पड़ा था तथापि छोड़ा हुआ जल उत्पादन के लिए भी प्रयोग किया जा सकता था यदि उस समय पर कोई आऊटेज न हुआ होता।

एसजेवीएन ने बताया (अगस्त 2015) कि 60 महीने की लेखापरीक्षा अविध के दौरान, कुल 26 2800 मशीन घण्टों में से एनजेएचपीएस में बलात आऊटेज केवल 2736 मशीन घण्टे था, जो 1.041 प्रतिशत बनता था।

यद्यपि लेखापरीक्षा बलात आऊटेज के संबंध में एसजेवीएन के निष्पादन की प्रशंसा करता है, फिर भी तथ्य यह रह जाता है कि बलात आऊटेज के 1472.32 घण्टों में से, 305 घण्टे मानसून अविध के दौरान थे। सीईआरसी द्वारा निर्धारित सिद्धान्त के अनुसार सभी मशीनें मानसून के दौरान सभी प्रकार के संयंत्रों के लिए 24 घण्टे तक उपलब्ध रहनी आवश्यक थीं।

सीईए ने बताया (अगस्त 2015) कि विद्युत उत्पादक जनोपयोगी संस्थाओं को विशेषकर मानसून के दौरान बलात आऊटेज तथा उसके परिणामस्वरूप होने वाली उत्पादन की हानि को कम करने के लिए पावर स्टेशनों के बेहतर निष्पादन हेतू अनुशंसित चालन एवं अनुरक्षण व्यवहार का पालन करने तथा निवारक अनुरक्षण उपाय करने की आवश्यकता है।

4.3.2 लेखापरीक्षा ने छह घण्टे से अधिक के बलात आऊटेज का विश्लेषण किया और देखा कि निष्पादन लेखापरीक्षा हेतू चयनित पावर स्टेशनों के संयंत्र एवं मशीनों ने दीर्घाविध अनसुलझे तथा बार बार होने वाले दोषों के कारण आऊटेज वहन किया जिन्हें समय पर मरम्मत के माध्यम से नियंत्रित किया जाना संभव था। पावर स्टेशनों ने 2006 से 2014 की अविध के दौरान ऐसे परिहार्य बलात आऊटेज के कारण 438.66 एमयू के उत्पादन की हानि वहन की। लेखापरीक्षा में देखे गए महत्वपूर्ण मामलों के साथ प्रबन्धन प्रतिक्रिया के ब्यौरे अनुबन्ध 4.4 में दर्शाए गए हैं।

अध्याय - V

विद्युत की बिक्री और राजस्व का संग्रहण

5.1 विद्युत की बिक्री

सीपीएसईज ने विद्युत के आपूर्ति हेतू प्रत्येक लाभार्थी के साथ विद्युत खरीद करार (पीपीए) थोक विद्युत आपूर्ति करार (बीपीएसए) किया।

बीपीएसए के प्रावधानों के अनुसार, पावर स्टेशनों से विद्युत की आपूर्ति के लिए बिलों का भुगतान थोक विद्युत ग्राहको द्वारा अगले 12 महीने के उनकी औसत मासिक बिलिंग के 105 प्रतिशत के बराबर की राशि के लिए सीपीएसईज के पक्ष में बनाए गए एक स्थायी, परकम्य, अविकल्पी साख पत्र (एलसी) के माध्यम से किया जाएगा। एलसी करार की वैधता के दौरान सदैव बैध रखा जाएगा तथा एलसी को राशि की तीन/छह महीने में एक बार समीक्षा की जाएगी।

लेखापरीक्षा ने 2009 से 2014 की अवधि के दौरान चयनित पावर स्टेशनों से विद्युत खरीदने वाले सभी 21 लाभार्थियों के संबंध में पीपीएज/बीपीएसएज, लाभार्थियों द्वारा खोले गए एलसीज तथा उठाए गए मासिक ऊर्जा बिक्री बिल तथा सीपीएसईज द्वारा अनुमत की गई छूट की समीक्षा की तथा निम्नलिखित देखाः

5.1.1 लाभार्थियों के साथ पीपीए/बीपीएसए पर हस्ताक्षर न करना/नवीनीकरण न करना

एनएचपीसी ने अपने पावर स्टेशनों से विद्युत की आपूर्ति के लिए (2002 तक) के साथ पीपीएज/बीपीएसएज पर हस्ताक्षर किये थे। 2002 में डीवीबी दो उत्पादक कम्पनियों में बट गया, एक ट्रॉसिमशन कम्पनी (डीटीएल) तथा तीन वितरण कम्पनियाँ यथा नार्थ दिल्ली पावर लिमिटेड (एनडीपीएल) जिसे बाद में टाटा पावर दिल्ली डिस्ट्रीब्यूशन लिमिटेड (टीपीडीडीएल) नाम दिया गया, बीएसईएस यमुना पावर लिमिटेड (बीवाईपीएल) तथा बीएसईएस राजधानी पावर लिमिटेड (बीआरपीएल) । 31 मार्च 2007 तक डीटीएल के एनएचपीसी की साथ पीपीएज थे तथा यह वितरक कम्पनियों (डिस्काम्स) को विद्युत की थोक आपूर्ति कर रही थी। अतः, 2007 तक, एनएचपीसी तथा दिल्ली डिस्काम्स के बीच कोई प्रत्यक्ष संविदात्मक संबंध नही था। अप्रैल 2007 में, डीईआरसी ने एनएचपीसी उत्पादक स्टेशनों में क्षमताओं को सीधे दिल्ली डिस्काम्स को आबंटित कर दिया। इस प्रकार, 1 अप्रैल 2007 से दिल्ली डिस्काम्स एनएचपीसी के साथ प्रत्यक्ष संविदात्मक संबंध में आये। तथापि, एनएचपीसी ने अभी तक (अगस्त 2015) दिल्ली डिस्काम्स के साथ पीपीएज/बीपीएसज पर हस्ताक्षर नहीं किये हैं।

एनएचपीसी ने बताया (फरवरी/अगस्त 2015) कि दिल्ली (डिस्काम्स) के साथ पीपीए/बीपीएसए मार्च 2007 में समाप्त हो गया था। यद्यपि दिल्ली डिस्काम्स के साथ हस्ताक्षरित बीपीएसए समाप्त हो गया था, फिर भी करार में अनुबद्ध किया गया (खण्ड 12) था कि "इस अनुबन्ध के प्रावधान इस करार को औपचारिक रूप से नवीकृत करने, विस्तारित करने अथवा बदलने तक निरंतर जारी रहेगें।" इस प्रकार, समाप्त हो चुके बीपीएसए की सभी निबन्धन एवं शर्ते नया बीपीएसए हस्ताक्षरित होने तक प्रवृत्त थी। एनएचपीसी ने आगे बताया कि वे बीपीएसए शीघ्र हस्ताक्षरित कराने के लिए नियमित रूप से बीवाईपीएल एवं टीपीडीडीएल से बात कर रहे हैं।

तथ्य यह रह जाता है कि पीपीएज/बीपीएसएज डीटीएल के साथ हस्ताक्षरित किए गए थे न कि सीधे ही दिल्ली डिस्काम्स के साथ। अतः, दिल्ली डिस्काम्स के साथ पीपीएज/बीपीएसएज पर हस्ताक्षर करना एनएचपीसी के हित में होगा। एसजेवीएन तथा टीएचडीसी के संबंध में एनएचपीसी के उत्तर के सत्यापन से पता चला कि टीएचडीसी ने क्रमशः मार्च 2011 तथा मार्च 2012 में टीपीडीडीएल तथा बीआरपीएल के साथ बीपीएसएज निष्पादित किया तथापि बीवाईपीएल के साथ बीपीएसए अभी टीएचडीसी

द्वारा निष्पादित किया जाना था। एसजेवीएन ने अभी तक (अगस्त 2015) तीनों दिल्ली डिस्काम्स मे से किसी के साथ पीपीएज/बीपीएसएज पर हस्ताक्षर नहीं किये थे।

5.1.2 छूट नीति का कार्यान्वयन तथा भुगतान सुरक्षा तंत्र

एनएचपीसी की छूट नीति के अनुसार लाभार्थियों को छूट तभी अनुमत होनी थी जब बिल के प्रस्तुतिकरण की तिथि से पहले प्रति माह अधिकतम चार परिक्रमणों के साथ अपेक्षित राशि (पिछले 12 महीनों के मासिक औसत बिलों का 105 प्रतिशत) का एलसी यथास्थान हो। तथापि, एनएचपीसी ने लाभार्थियों को छूट की अनुमति देते समय उपरोक्त अनिवार्य शर्तों का पालन सुनिश्चित नहीं किया था। तदनुसार, एनएचपीसी द्वारा उन लाभार्थियों को ₹ 60.48 करोड़ की छूट अनुमत की गई थीं जो छूट नीति के अनुसार छूट के पात्र नहीं थे।

एनएचपीसी ने बताया (फरवरी 2015) कि (i) कुछ लाभार्थियों ने एलसी के अपेक्षित मूल्य की गणना करते समय संबंधित खण्ड की अपनी व्याख्या के अनुसार पिछली अवधि के लिए पूरक बिल/बकाया बिल शामिल नहीं किये थे तथा (ii) कुछ लाभार्थियों ने पाँच परिक्रमणों के साथ परक्रम्य एलसी खोला था जबिक उन्होंने भुगतान रियल टाईम ग्राँस सेटमेंट (आरटीजीएस) के माध्यम से किया था। इस प्रकार भुगतान के माध्यम के रूप में एलसी का प्रयोग नहीं किया गया था तथा इसे केवल भुगतान सुरक्षा तंत्र के रूप में रखा गया था।

उत्तर इस तथ्य के प्रति देखा जाना है कि एनएचपीसी की छूट नीति के अनुसार, एलसी एनएचपीसी द्वारा पिछले 12 महीनों के दौरान उठाए गए मासिक औसत बिल (सामान्य, पूरक अथवा बकाया बिल) के 105 प्रतिशत के बराबर राशि के लिए खोला जाना था। अतः एलसी की राशि से पूरक एवं बकाया बिलों के निष्कासन तथा चार से अंधिक परिक्रमणों के साथ एलसी खोलने ने नीति के अनुसार छूट के लिए लाभार्थियों को आयोग्य बना दिया था।

लेखापरीक्षा ने यह भी देखा कि एसजेवीएन बकाया राशिके समयबद्ध भुगतान हेतु एलसी पर जोर नहीं दे रहा था। परिणामस्वरूप भुगतान सुरक्षा तंत्र के रूप में एलसी प्राप्त करने को प्रभावकारी रूप से लागू नहीं किया गया था। यह इस तथ्य से स्पष्ट था कि बीआरपीएल (2011-12), बीवाईपीएल (2011-12 तथा 2013-14) तथा पॉवर डिस्ट्रीब्यूशन डिपार्टमेंट, (पीडिडि) जम्मू एवं कश्मीर (जे. एवं के) (2012-14) द्वारा एलसीज नहीं बनाए गए थे तथा मार्च 2014 को इन लाभार्थियों से कुल ₹ 187.87 करोड़ की देयताएँ बकाया थी।

एसजेवीएन ने एलसीज न खोलने की पुष्टि की(अगस्त 2015) ।

एमओपी ने भी बताया (अगस्त 2015) कि सभी राज्य सरकारों/इकाईयों के साथ एलसी बनाए जाने के लिए प्रयास किये जाने चाहिएं।

5.2 राजस्व का संग्रहण

5.2.1 बकाया देय राशि की स्थिति और विद्युत का विनियमन

2009-10 से 2014-15 वर्षों की समाप्ति पर उन लाभार्थियों के देयों की बकाया स्थिति जो लगातार एनएचपीसी, एसजेवीएन और टीएचडीसी को देय राशि को चुकाने में विफल रहे को तालिका 5.1 में दर्शाया गया है।

तालिका 5.1 2009-10 से 2014-15 के वर्षों की समाप्ति पर लाभार्थी-वार बकाया देयों की स्थिति (₹ करोड में)

वर्ष	लाभार्थी का नाम	एनएचपीसी	एसजेवीएन	टीएचडीसी	जोड
	बीआरपीएल	44.42	9.71	18.66	72.79
	बीवाईपीएल	38.37	6.07	7.94	52.38
2009-10	पीडीडीजेएडंके	87.99	14.50	25.83	128.32
	यूपीपीसीएल	52.36	शून्य	69.28	121.64
	बीएसईबी	22.82	शून्य	शून्य	22.82
जोड		245.96	30.28	121.71	397.95
	बीआरपीएल	14.39	13.72	20.53	48.64
	बीवाईपीएल	8.99	8.55	12.83	30.37
2010-11	पीडीडीजेएडंके	15.00	22.39	11.42	48.81
	यूपीपीसीएल	शून्य	34.85	72.96	107.81
	बीएसईबी	5.22	शून्य	शून्य	5.22
जोड		43.60	79.51	117.74	240.85
	बीआरपीएल	281.02	69.62	68.34	418.98
	बीवाईपीएल	187.01	39.45	15.75	242.21
2011-12	पीडीडीजेएडंके	46.51	27.00	30.07	103.58
	यूपीपीसीएल	542.06	125.76	464.84	1132.66
	बीएसईबी	147.96	शून्य	शून्य	147.96
जोड		1204.56	261.83	579.00	2045.39
	बीआरपीएल	168.26	53.16	84.14	305.56
	बीवाईपीएल	61.74	34.76	66.17	162.67
2012-13	पीडीडीजेएडंके	504.06	42.35	59.01	605.42
	यूपीपीसीएल	452.52	139.84	759.09	1351.45
	बीएसईबी	26.69	शून्य	शून्य	26.69
जोड		1213.27	270.11	968.41	2451.79
	बीआरपीएल	34.26	57.81	88.37	180.44
	बीवाईपीएल	44.78	67.34	116.56	228.68
2013-14	पीडीडीजेएडंके	1006.43	62.72	64.76	1133.91
	यूपीपीसीएल	115.75	64.12	247.93	427.80
	बीएसईबी	19.05	शून्य	शून्य	19.05
जोड		1220.27	251.99	517.62	1989.88
	बीआरपीएल	111.64	116.80	196.68	425.12
	बीवाईपीएल	152.35	90.32	192.04	434.71
	पीडीडीजेएडंके	1376.88	298.77	227.89	1903.54
	यूपीपीसीएल	161.23	136.56	1032.24	1330.03
2014-15	बीएसईबी	19.09	शून्य	शून्य	19.09
जोड		1821.19	642.45	1648.85	4112.49

सीईआरसी (विद्युत आपूर्ति का विनियमन) विनियमावली 2010 में प्रावधान किया गया है कि 60 दिनों से अधिक के बकाया देयों के मामले में या अपेक्षित एलसी अथवा कोई अन्य सम्मत भुगतान सुरक्षा तंत्र को समझौते के अनुसार अनुरक्षित नहीं किया गया था, तो उत्पादक कम्पनी चूककर्ता सत्व को आहरित समय अनुसूची को कम करने के लिए विद्युत आपूर्ति के विनियमन के लिए नोटिस जारी कर सकती है। सीपीएसईज और लाभार्थियों के बीच हस्ताक्षरित पीपीएएस में भी इस प्रभाव का प्रावधान है कि यदि थोक विद्युत उपभोक्ता द्वारा बिलिंग की तिथि से 60 दिनों के अन्दर बिलों का भुगतान नहीं किया जाता है, तो संबंधित सीपीएसईज के पास समय समय पर सीईआरसी/जीओआई द्वारा जारी विर्निदेशों/दिशानिर्देशों के अनुसार थोक विद्युत उपभोक्ता को विद्युत की आपूर्ति विनियमित करने का विकल्प होगा।

सीपीएसईज द्वारा चूककर्त्ता लाभार्थियों के लिए उपरोक्त सीईआरसी विनियमों के कार्यान्वयन की लेखापरीक्षा जॉच से पता चला किः

एनएचपीसी

- (i) यद्यपि, जून 2011 से बीआरपीएल, बीवाईपीएल और यूपीपीसीएल के 60 दिनों से अधिक के बकाया देय बढ़ने प्रारंभ हो गए थे, फिर भी एनएचपीसी ने पहली बार फरवरी 2012 में विद्युत विनियमन का सहारा लिया।
- (ii) यद्यपि जून 2012 से पीडीडी, जेएडंके के 60 दिनों से अधिक के बकाया देय जमा होने शुरू हो गए थे, फिर भी एनएचपीसी ने फरवरी 2014 में विद्युत विनियमन किया और वह भी केवल दो दिनों तक रहा।
- (iii) एक बार प्रारंभ करने के बाद विद्युत विनियमन बकाया देय राशियों को पूरी तरह से समायोजन किए बिना समाप्त कर दिया गया था।

फलस्वरूप, मार्च 2015 तक ₹ 1802.10 करोड़ का बकाया देय एनएचपीसी द्वारा विद्युत विनियमन के बाद भी उपरोक्त लाभार्थियों से उगाही किया जाना बाकी रह गया था।

एनएचपीसी ने कहा (अगस्त 2015)कि लाभार्थियों से भुगतान की समय पर उगाही के लिए प्रबल अनुवर्ती कार्रवाई की गई थी। व्यवसायिक परिवेश में जब सभी स्तर पर बातचीत का विकल्प समाप्त होने पर ही, विद्युत विनियमन को आखिरी उपाय के रूप में विचार करना व्यवहारिक था।

एमओपी ने कहा (सितम्बर 2015) कि विभिन्न राज्यों से हाइड्रो सीपीएसईज के बकाया भुगतान मंत्रालय के लिए चिन्ता का विषय था। सीईआरसी विनियमावली पीपीएज में यथा निर्धारित भुगतान सुरक्षा तंत्र के लिए सभी प्रावधानों का कार्यान्वयन राज्यों के विरोध और हमारी नीति के संधीय स्वरूप होने के कारण हमेशा व्यवहार्य नहीं था। कई बार अनुवर्ती कार्रवाई और अनुनय से बेहतर परिणाम निकलते हैं। फिर भी, सीपीएसईज को हमेशा निर्धारित सुरक्षा उपायों के कार्यान्वयन पर जोर देना चाहिए।

तथ्य यह रह जाता है कि मार्च 2011 तक ₹ 43.60 करोड़ से मार्च 2015 में ₹ 1821.19 करोड़ के बकाया देय लगातार बढ़ रहे थे। एमओपी की सहायता से एनएचपीसी नियमित रूप से चूककर्ता लाभार्थियों से देयों की वसूली की विभिन्न संभावनाओं की गंभीरता से पुनरीक्षा कर सकता है।

एसजेवीएन

बीआरपीएल और बीवाईपीएल ने अप्रैल 2011 से एलसी का रखरखाव नहीं किया था और मई 2011 से उनके बकाया देयों में लगातार वृद्धि हो रही थी। तथापि, एसजेवीएन ने नवम्बर 2011 और दिसम्बर 2011 से बीआरपीएल और बीवाईपीएल की विद्युत का विनियमन प्रारम्भ किया जबिक बीआरपीएल और बीवाईपीएल के बकाया देय क्रमशः ₹ 35.73 करोड और ₹ 30.70 करोड हो गए। विद्युत विनियमन के बाद भी मार्च 2012 में बीआरपीएल और बीवाईपीएल के प्रति बकाया राशि क्रमशः ₹ 54.40 करोड और ₹ 32.27 करोड तक बढ गई। एसजेवीएन ने 27 अप्रैल 2012 को विद्युत विनियमन वापिस ले लिया जब बीएसईएस ने बीआरपीएल तथा बीवाईपीएल की ओर से दिनांक 22 मार्च 2012 के पत्र द्वारा परिसमापन योजना प्रस्तुत की जिसमें पुष्टि की गई थी कि अधिभार सहित एसजेवीएन के 90 प्रतिशत देयों को 11 किश्तों में परिसमाप्त किया जाएगा। चूंकि बीवाईपीएल ने अपनी प्रतिबद्धता को पूरा नही किया, अतः एसजेवीएन ने सितम्बर 2013 से बीवाईपीएल के विद्युत के विनियमन को पुनः शुरू कर दिया जो प्रगति पर थी (दिसम्बर 2014) । इसके अलावा, यूपीपीसीएल के मामले में यद्यपि बकाया देय नवम्बर 2011 से बढता हुआ रूझान दिखा रहे थे, फिर भी एसजेवीएन ने अप्रैल 2012 से विद्युत का विनियमन शुरू किया जब बकाया देयों में ₹ 101 करोड तक वृद्धि हो गई थी।

एसजेवीएन ने आगे बताया (अगस्त 2015) कि बकाया देयों की वसूली के लिए नियमित अनुवर्ती कार्रवाई की गई थी और विद्युत के विनियमन को अन्तिम विकल्प के रूप में किया गया था।

तथ्य यह रह जाता है कि एसजेवीएन को इन पार्टियों से मार्च 2015 तक ₹ 642.45 करोड़ के बकाया देयों के परिसमापन के लिए एक तंत्र बनाने की आवश्यकता होगी।

एमओपी ने कहा (अगस्त 2015) कि बकाया देयों की उगाही के लिए किए गए प्रयासों के अलावा, सीपीएसईज संबंधित राज्य सरकारों/इकाईयों को नोटिस जारी करने पर विचार कर सकती है। एमओपी ने एग्जिट कान्फ्रेंस में यह भी कहा कि विधुत विनियमन से संबंधित प्रावधान महत्वपूर्ण प्रावधान थे जिनकी वजह से सीपीएसईज कुछ बकाया देयों की वसूली करने में सक्षम रहीं।

5.3 पूरे दिन के लिए मशीनों की उपलब्धता के बिना एनएचपीसी पावर स्टेशनों द्वारा क्षमता उदधोषणा

13 अक्तूबर 2012 को आयोजित उत्तरी क्षेत्र विद्युत समिति (एनआरपीसी) की वाणिज्यिक उपसमिति की 22 वीं बैठक में उत्तरी क्षेत्र लोड प्रेषण केंद्र (एनआरएलडीसी) ने स्पष्ट किया था कि सीईआरसी (टैरिफ की निबंधन एवं शर्तो) विनियमावली 2009 के विनियम 3 (13) और 3 (14) के अनुसार घोषित क्षमता²¹ 00 से 24 घंटे होनी चाहिए। बंद घोषित की गई मशीन का उपलब्धता के लिए विचार नहीं किया जाना चाहिए क्योंकि वह ग्रिड में किसी आकस्मिकता के मामले में विद्युत उत्पादन में समर्थ नहीं होगी।

डीजीपीएस और टीपीएस द्वारा घोषित क्षमता की पुनरीक्षा से पता चला कि कई बार विद्युत स्टेशनों ने डीसी को घोषणा (एक्स-बस एमडब्ल्यू में) शीर्ष मांग घंटे के दौरान मशीनों की उपलब्धता के आधार पर की थी जबकि कई मशीनें पूरे दिन के लिए उपलब्ध नहीं थी। लेखापरीक्षा ने पाया कि ऐसे 53 मामले पाए

²¹ सीईआरसी (टैरिफ की निबंधन और शर्ते) विनियमावली 2009 के विनियम 3 (14) ने घोषित क्षमता (डीसी) को दिन के किसी भी समय ब्लाक या पूरे दिन के संबंध में उत्पादन स्टेशन द्वारा घोषित एमडब्ल्यू में एक्स-बस विद्युत सुपुर्दगी की क्षमता, ईंधन या जल की उपलब्धता को ध्यान में रखते हुए और सुसंगत विनियम में प्रमाणत के अध्यधीन के रूप में परिभाषित किया है। सीईआरसी ने विनियम 3 (13) द्वारा 'दिन शब्द को और 0000 घंटे से प्रारंभ 24 घंटे की अवधि परिभाषित किया है।

जहाँ पूरे 24 घंटे के लिए मशीनों की उपलब्धता नहीं थी इसके बावजूद डीसी घोषित की गई थी। अन्य तीन मामलों में, 24 अप्रैल 2009 और 19 दिसम्बर 2009 को डीजीपीएस में एक यूनिट और 15 जुलाई 2011 को टीपीएस में एक और यूनिट पूरे दिन के लिए बंद थी किन्तु इन पावर स्टेशनों द्वारा 100 प्रतिशत पीएएफ का दावा किया गया था।

इस प्रकार पूरे दिन के लिए अनुपलब्ध मशीनों पर डीसी की घोषणा कर, यद्यपि पावर स्टेशनों ने अपने वाणिज्यिक हित को प्राथमिकता दी थी, फिर भी किसी आकस्मिकता में ग्रिड की सुरक्षा की अनदेखी की गई थी। एनआरएलडीसी ने भी जोर दिया था कि उस मामले में जहां एनएचपीसी मानता है कि विनियमों में अन्यथा प्रावधान किया गया है, तो वह स्पष्टीकरण हेतु सीईआरसी के साथ मामला उठा सकता है। तथापि, लेखापरीक्षा ने पाया कि डीजीपीएस ने ग्रिड सुरक्षा की आवश्यकता को नजर अंदाज करते हुए अपनी स्वयं की व्याख्या के अनुसार एनआरएलडीसी की रिजर्वेशन के बाद भी डीसी घोषित करना जारी रखा।

इसके अतिरिक्त, एनएचपीसी ने सीईआरसी के साथ डीसी से संबंधित मामला नही उठाया जैसा कि एनआरएलडीसी द्वारा वाणिज्यिक उप समिति की 22 वीं बैठक में सुझाव दिया गया था।

एनएचपीसी ने कहा (फरवरी 2015 और अगस्त 2015) कि लेखापरीक्षा में उठाई गई टिप्पणी को भविष्य के लिए नोट कर लिया गया है और डीसी केवल मशीनों की उपलब्धता के आधार पर दी जाएगी।

अध्याय _ VI

आपदा प्रबन्धन

6.1 हाइड्रो सीपीएसईज में आपदा प्रबन्धन की महत्ता

जे एडं के, उत्तराखण्ड, हिमाचल प्रदेश और सिक्किम में स्थित हाइड्रो विद्युत स्टेशन उच्च भूकम्पीय ज़ोन²² में आते हैं। ये पावर स्टेशन हिमालय क्षेत्र में स्थित है जहाँ भारी बारिश की प्रवृति होती है, विशेष रूप से मानसून के दौरान और विभिन्न स्थानों पर बाढ और भूस्खलन आना सामान्य है। इसके अलावा, हिमालयी राज्यों में, जहाँ सीपीएसईज़ के पावर स्टेशन स्थित है, सड्कों के अलावा कोई अन्य परिवहन का साधन नहीं है, वहाँ संरचनात्मक ढांचे की कमी से आपदा के दौरान सीपीएसईज की संवेदनशीलता बढ जाती है। अतः आपदा प्रबन्धन का हाइड्रो पावर क्षेत्र की सीपीएसईज के लिए अत्याधिक महत्व है।

6.2 आपदा प्रबन्धन विनियमों का रनेपशाट - भारत सरकार की भूमिका

2002 में सीईए ने विद्युत प्रतिष्ठापनों की सुरक्षा के लिए दिशा निर्देश प्रदान करने के उद्देश्य से विद्युत क्षेत्र में आपदा प्रबन्धन पर एक रिपोर्ट तैयार की थी।

भारत सरकार (जीओआई) ने भी आपदा प्रबन्धन अधिनियम, 2005 (अधिनियम) बनाया था। अधिनियम की धारा 37 (1) में प्रावधान किया गया है कि भारत सरकार का प्रत्येक मंत्रालय या विभाग एक आपदा प्रबन्धन योजना (डीएमपी) तैयार करेगा जिसमें अन्य बातों के साथ साथ आपदाओं के निवारण और उनसे होने वाले नुकसान को कम से कम करने के लिए उसके द्वारा किए जाने वाले उपाय निर्दिष्ट किए जाएँ। धारा 37 में यह भी प्रावधान किया गया है कि प्रत्येक मंत्रालय या विभाग वार्षिक रूप से डीएमपी की समीक्षा और अद्यतन करेगा।

6.3 हाइड्रो सीपीएसईज में आपदा प्रबन्धन पर आपत्तियाँ

सीईए के दिशानिर्देशों और आपदा प्रबन्धन अधिनियम, 2005 के मद्देनजर सीपीएसईज के चयनित विद्युत स्टेशनों द्वारा आपदाओं के पूर्वानुमान और निवारण के लिए की गई तैयारियों की जांच की गई थी। जांच के परिणामों की चर्चा अनुवर्ती पैराग्राफों में की गई है:

6.3.1 डीएमपी की मौजूदगी तथा अद्यतन

निम्नलिखित तालिका निष्पादन लेखापरीक्षा के लिए चयनित पावर स्टेशनों द्वारा डीएमपी बनाने तथा उनके अद्यतन से संबंधित स्थिति को दर्शाती है:

²² भारतीय मौसम विभाग की वेबसाइट पर उपलब्ध सूचना के अनुसार, भूकम्पीय गतिविधियों की तीव्रता की दृष्टि से देश को चार ज़ोनों में विभाजित किया गया है। ज़ोन-।। से ज़ोन v. जोन-।। (कुल क्षेत्र का 43 प्रतिशत कवर करता है) कम भूकम्पीय क्षेत्र है जबकि ज़ोन-v (कुल क्षेत्र का 12 प्रतिशत कवर करता है) सबसे अधिक भूकम्पीय उन्मुख है।

तालिका 6.1	
चयनित पावर स्टेशनो द्वारा डीएमपी बनाने तथा अद्यतन से संबधित विवरण	

क्र. सं.	पावर स्टेशन का नाम	वाणिज्यिक परिचालन के आरम्भ का वर्ष	डीएमपी जारी करने की तिथि	डीएमपी की समीक्षा तथा अद्यतन का वर्ष
	एनएचपीसी			
1	बैरास्यूल	1982	अप्रैल2005	समीक्षा तथा अद्यतन नहीं हुआ
2	टनकपुर	1993	अप्रैल2005	-वही-
3	चमेरा-।	1994	अप्रैल2005	अक्तूबर 2012
4	उरी-।	1997	अप्रैल2005	समीक्षा तथा अद्यतन नहीं हुआ
5	धौलीगंगा	2005	नवम्बर 2007	-वहीं-
6	तीस्ता-V	2008	मार्च 2012	-वहीं-
7	चमेरा-III	2012	अक्तूबर 2014	समीक्षा तथा अद्यतन के लिए
8	चुटक	2013	जनवरी 2015	पात्र नहीं
	एनएचडीसी			
9	इन्दिरा सागर	2005	अक्तूबर 2013	समीक्षा तथा अद्यतन नहीं हुआ
	एसजेवीएन			
10	नथपा-झाकरी	2004	मार्च 2007	समीक्षा तथा अद्यतन नहीं हुआ
	टीएचडीसी			
11	टेहरी हाइड्रो	2007	मई 2009	जून 2015

जैसाकि उपरोक्त तालिका से देखा जा सकता है कि डीएमपी बनाने वाले 11 पावर स्टेशन में से आठ ने आपदा प्रबंधन अधिनियम, 2005 के खण्ड 37(1) (ख) के अनुसार इसकी वार्षिक रूप से समीक्षा नहीं की। शेष तीन पावर स्टेशनो में से केवल एक पावर स्टेशन ने अपने डीएमपी की समीक्षा की तथा अन्य दो में यह समीक्षा तथा अद्यतन के लिए पात्र नहीं था।

एनएचपीसी ने कहा (अगस्त 2015) कि डीएमपी के अद्यतन हेतु निर्देश सभी एचओपी को प्रचालित कर दिये गये हैं तथा इसे जल्दी ही अंतिम रूप दिया जाएगा।

मंत्रालय ने सहमत किया (अगस्त 2015) कि एनएचपीसी को अपने सभी पावर स्टेशनो में वार्षिक रूप से आपदा प्रबंधन योजना का अद्यतन सुनिश्चित करने की आवश्यकता थी। मंत्रालय ने बांध विफलता या अचानक जल छोड़ने के मामलों में आपदा प्रबंधन के लिए विद्युत उत्पादक संस्थाओं द्वारा किए जाने वाले उपयुक्त उपायो की जरूरत संबंधी सीईए की टिप्पणियों की पुष्टि भी की। आकस्मिक बाढ़ के मामले में आपदा प्रबंधन का विशेषतः 2013 में उत्तराखण्ड बाढ़ के संदर्भ में, समुचित ध्यान रखा जाना चाहिए।

एनजेएचपीएस के संदर्भ में, एसजेवीएन ने कहा (अगस्त 2015) कि 2007 में बनी डीएमपी की जून 2013 में समीक्षा की गई थी।

हालांकि, तथ्य यह है कि डीएमपी समीक्षा के दौरान चिन्हित समस्याओं जैसे बायल नाल्लाह से जल के अत्यधिक अन्तर्प्रवाह के कारण पावर हाउस में बाढ़ आना, मुख्यतः मानसून सीजन के दौरान समन्वय तंत्र की आवश्यकता, जिला प्रशासन, सेना, कर्चम वांगतू परियोजना, रामपुर हाइड्रो इलेक्ट्रिक परियोजना के साथ समन्वय तथा वास्तविक समय स्थितियों में पूर्व चेतावनी तंत्र स्टेशनों को मजबूत बनाने का अभी डीएमपी में समाधान किया जाना बाकी था।

टीएचपीसी के संदर्भ में, टीएचडीसी ने कहा (अगस्त 2015) कि टीएचपीएस का डीएमपी संशोधित करने के उपरान्त 04 जून 2015 को सभी संबंधितों को प्रचालित कर दिया गया है तथा इसकी वार्षिक आधार पर समीक्षा की जाएगी।

एमओपी ने कहा (सितम्बर 2015) कि सीपीएसईज अपने डीएमपी में किमयों का समाधान कर रहे थे। चूंकि प्राकृतिक आपदा पर कोई मानवीय नियंत्रण नहीं है अतः इस उद्देश्य को सुनिश्चित किया जाना चाहिए कि आपदाओं से कैसे बचा जा सकता है तथा/अथवा कैसे उन्हें नियंत्रित किया जा सकता है।

6.3.2 डीएमपी के निर्माण में डेम ब्रेक विश्लेषण इनपुटों का उपयोग

डेम ब्रेक एक बांध की आंशिक या आपाती विफलता है (जो खराब निर्माण, खराब प्रबंधन, अपर्याप्त अधिप्लव मार्ग क्षमता तथा प्राकृतिक आपदा के असंभावित मामलों में हो सकता है) जिससे जल की अनियंत्रित निकासी से नीचे की ओर स्थित जीवनो तथा सम्पत्तियों को गंभीर क्षति पहुंचती है। यदि बाढ़ के अधिकतम विस्तार तथा बाँध के डाउनस्ट्रीम में विभिन्न स्थानो पर इसके पहुंचने के समय को आंकलित कर उन्हें आपातकालीन योजना बनाने एवं किर्यान्वयन करने में इस्तेमाल किया जाता है तो ऐसी बाढ आपदा के प्रभाव को काफी हद तक कम किया जा सकता है। अतः बांध की सुरक्षा में शामिल संगठनो का यह उत्तरदायित्व बनता है कि वे निवारक उपायों की योजना बनाएँ जिससे बाँध विफल होने की संभावित स्थिति में हानि को यथासंभव कम किया जा सके।

पर्यावरणीय प्रभाव निर्धारण (ईआईए) अधिसूचना 1994 ने ईआईए तथा पर्यावरणीय प्रबंधन योजना (ईएमपी) बनाने की आवश्यकता पर बल दिया था, जिसमें डेम ब्रेक विश्लेषण करना सम्मिलित था जिससे जलप्लावन मानचित्रों का बनाने तथा डीएमपी के लिए अनिवार्य इनपुट उपलब्ध हो सके। सीपीएसईज़ द्वारा ईआईए अधिसूचना, 1994 के अनुपालन की चर्चा आगामी पैराओं में की गई है:

एनएचपीसी

6.3.2.1 लेखापरीक्षा ने अवलोकन किया कि एनएचपीसी के आठ चयनित पावर स्टेशनो में से केवल तीन परियोजनाओं अर्थात चमेरा । तथा ।।। और चुटक के संदर्भ में डेम ब्रेक विश्लेषण किया गया था। शेष पांच पावर स्टेशनो अर्थात बैरास्यूल, धौलीगंगा, टनकपुर, उरी । तथा तीस्ता V में डेम ब्रेक विश्लेषण नहीं किया गया था।

एनएचपीसी ने कहा (नवम्बर 2014) कि ईआईए तथा ईएमपी जिसमें डेम ब्रेक विश्लेषण अनिवार्य रूप से सिम्मिलित था, को केवल उन परियोजनाओं के लिए बनाया गया था जिन्हें ईआईए अधिसूचना के पश्चात बनाया गया था।

उत्तर की इन तथ्यों के प्रति समीक्षा की जानी है कि (i) तीस्ता V परियोजना, जिसकी डीपीआर को ईआईए अधिसूचना जारी होने के पश्चात बनाया गया था, में भी डेम ब्रेक विश्लेषण नहीं किया गया था। (ii) पर्यावरण तथा वन मंत्रालय द्वारा ईआईए अधिसूचना 1994 में जारी की गई थी। परन्तु चूंकि अधिसूचना जारी होने के पश्चात 20 वर्षों से ज्यादा बीत चुके है, एनएचपीसी द्वारा अपने पुराने पावर स्टेशनों के भी डेम ब्रेक विश्लेषण कराके उनके डीएमपी की प्रचलित स्थिति से सुसंगति सुनिश्चित करना अपेक्षित था। हालांकि केवल एक पुराने पावर स्टेशन अर्थात चमेरा -। के संदर्भ में डेम ब्रेक विश्लेषण किया गया तथा शेष चार पुराने पावर स्टेशनों में डेम ब्रेक विश्लेषण नहीं किया गया था। यद्यपि चमेरा -। ने मार्च 2005 में डेम ब्रेक स्थिति से निपटने के लिए आपातकालीन कार्रवाई योजना (ईएपी) को सिम्मिलित नहीं किया।

एनएचपीसी ने कहा (अगस्त 2015) कि सभी पावर स्टेशनों के संदर्भ में डेम ब्रेक विश्लेषण को एक वर्ष के अन्दर पूरा किया जाएगा तथा इसे डीएमपी/ईएपी में सम्मिलित किया जाएगा।

टीएचडीसी

6.3.2.2 मूल रूप से 2009 में निर्मित टीएचपीएस के डीएमपी में बाढ़ क्षेत्र मानचित्रों को सम्मिलित नहीं किया।

टीएचडीसी ने कहा (अगस्त 2015) कि बाढ़ क्षेत्र मानचित्र जून 2015 में संशोधित डीएमपी में शामिल कर लिए गए थे तथा संशोधित डीएमपी का राष्ट्रीय आपदा प्रबंधन प्राधिकरण के विचार हेतु एमओपी को भेजा गया है।

6.4 पावर स्टेशनो के डीएमपीज़ तथा सीईए दिशा-निर्देश तथा राज्यों के डीएमपीज़ के बीच भिन्नता

लेखापरीक्षा ने अवलोकन किया कि सीईए दिशा-निर्देश या राज्य आपदा प्रबंधन योजना के अनुसार आवश्यक निम्नलिखित प्रावधानो को निष्पादन लेखापरीक्षा के लिए चयनित एनएचपीसी पावर स्टेशनो की डीएमपी में सम्मिलित नहीं किया गया थाः

- (i) बाढ से निपटनें के लिए तैयारी के उपायों के रूप में अग्रिम चेतावनी तंत्र की स्थापना करना।
- (ii) अधिक क्षमता डीजी सेटो से युक्त ट्रक, ट्रको/ट्रेलरो तथा क्रेनो, इत्यादि जैसे संसाधनों की अल्पसूचना पर तैनाती सुनिश्चित करने के लिए विभिन्न एजेंसियों के साथ निर्धारित अवधियों के लिए प्रतिबद्ध करारों को अंतिम रूप देना।
- (iii) पावर स्टेशन कॉम्प्लेक्स में कम्पनी के अस्पतालों के लिए आपातकालीन चिकित्सा योजना बनाने हेतु विशिष्ट आपातकालीन स्थिति से निपटने में अस्पतालों का क्षमता निर्धारण।
- (iv) पावर स्टेशनो की डीएमपीज़ में उन मानक परिचालन प्रक्रियाओं (एसओपी) का उल्लेख नहीं किया गया था जो खोज तथा बचाव, चिकित्सकीय सहायता, खाद्य प्रावधान, पेय जल, स्वच्छता, कपडे, राहत शिविर प्रबंधन तथा हादसा प्रबंधन निकासी जैसे कार्यों के लिए उपयोगी होगें।
- (v) पावर स्टेशनो ने हाइड्रोलॉजिकल डाटा संग्रहण तथा इसके प्रबंधन, हाइड्रोलॉजिकल अध्ययन, बाढ पूर्वानुमान तथा निर्णय लेने में नवीनतम भौगोलिक सूचना प्रणाली आधारित तकनीक के उपयोग सहित बाढ प्रबंधन के क्षेत्रो में क्षमता निर्माण के लिए इनहाउस अथवा बाहर से कार्यक्रम आयोजित नहीं किये थे।

लेखापरीक्षा अवलोकन को स्वीकार करते हुए, एनएचपीसी ने कहा (अगस्त 2015) कि (i) टीपीएस ने पूर्णिगरी मंदिर के फुट हिल्स पर एक माप एवं बहाव (जीएंडडी) अवलोकन स्थल स्थापित करने के लिए प्रस्ताव की शुरूआत की है जो बाढ़ से निपटने की तैयारी के लिए अग्रिम चेतावनी भी देगा। क्रम संख्या (ii), (iv) तथा (v) में उठाए गए बिन्दुओ पर आगे विचार-विमर्श किया जाएगा। बिन्दु संख्या (iii) के संदर्भ में, आपातकालीन चिकित्सकीय योजना को डीएमपी में सम्मिलित किया जा रहा था।

टीपीएस के अलावा अन्य पावर स्टेशनो द्वारा अग्रिम चेतावनी प्रणाली की स्थापना करने के संदर्भ में, एनएचपीसी ने कहा (अगस्त 2015) कि अग्रिम चेतावनी प्रणाली जो संग्रहण परियोजनाओं की एक विशेषता थी, एक अतिरिक्त जानकारी है, जिस पर पावर स्टेशनो द्वारा कोई अन्य सुधारात्मक कार्रवाई की जानी संभव नहीं थी। इसके अलावा, एनएचपीसी के कुछ पावर स्टेशन एक के बाद एक स्थित थे तथा इनमें अन्तप्रवीह के संदर्भ में अपस्ट्रीम तथा डाउनस्ट्रीम पावर स्टेशनो के बीच उचित समन्वय था। इसलिए,

डाउनस्ट्रीम परियोजनाओं को उचित अग्रिम चेतावनी मिल जाती थी। जहां पर भी संभव है, अपस्ट्रीम जीएंडडी स्थलों की स्थापना की जाएगी।

हालांकि, उत्तर को इस तथ्य के प्रति देखा जाना है कि बाढ़ से संभावित क्षिति को कम करने के लिए बाढ़ पूर्वानुमान तथा चेतावनी महत्वपूर्ण थी। यथार्थ बाढ़ पूर्वानुमान तथा अग्रिम चेतावनी का उद्देश्य जनता तथा सिवाल प्राधिकारियों को निकासी, राहत तथा पुनर्वास के लिए बहुमूल्य समय उपलब्ध कराना, इंजीनियरिंग प्राधिकारियों द्वारा बाढ़ प्रतिरक्षा के लिए तैयारी के माध्यम से क्षित को यथासंभव कम करना होता है।

एमओपी ने सहमति जताई (अगस्त 2015) कि लेखापरीक्षा द्वारा अनुशांसित अग्रिम चेतावनी प्रणाली को सभी हाइड्रो परियोजनाओं में संस्थापित किया जाना चाहिए।

6.5 सीडब्ल्यूसी दिशा-निर्देशो का अनुपालन न करना

सीडब्ल्यूसी के बांध सुरक्षा संगठन ने मई 2006 में बांधो के लिए ईएपी बनाने तथा क्रियान्वयन हेतु दिशा-निर्देश जारी किए थे। इन दिशा-निर्देशों का बांध के लिए ईएपी बनाने तथा क्रियान्वयन के दौरान अनुसरण किया जाना चाहिए। हालांकि, बांध के लिए ईएपी बनाते समय निष्पादन लेखापरीक्षा के लिए चयनित पावर स्टेशनों (इन्दिरा सागर को छोड़कर) द्वारा निम्नलिखित सीडब्ल्यूसी दिशा-निर्देशों का अनुसरण/अनुपालन नहीं किया गया था।

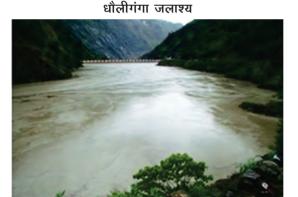
- (i) ईएपी में एक खण्ड सम्मिलित होना चाहिए जो योजना में सम्मिलित सभी पक्षो द्वारा हस्ताक्षरित हो, जहां वे योजना को अपनी स्वीकृति तथा इसके क्रियान्वयन में अपने उत्तरदायित्व की स्वीकृति दर्शाते हैं। एक ईएपी में स्वीकृति हस्ताक्षर अनिवार्य है क्योंकि यह सुनिश्चित करते है कि सम्मिलित सभी पक्ष ईएपी से परिचित है तथा उसे समझते है और ज्योहीं कोई आपदा आती है वे अपनी सौंपी गई भूमिका निभाने के लिए सहमत है।
- (ii) योजना को सूचना का प्रसार करने के लिए एक प्रवक्ता को पदनामित करना चाहिए। रेडियो, टेलीविजन तथा अखबार सहित समाचार मीडिया का यथोचित एवं यथासंभव उपयोग किया जाना चाहिए।
- (iii) विभिन्न आपातकालीन स्थितियों तथा असामान्य घटनाओं की रिकॉर्डिंग के लिए आकस्मिक घटना रिपोर्ट, भूकंप क्षति रिपोर्ट आदि के लिए निर्धारित फार्मेट का उपयोग किया जाना है।

एनएचपीसी ने लेखापरीक्षा अवलोकन को स्वीकार किया तथा कहा (फरवरी 2015) कि सीडब्ल्यूसी फार्मेट के अनुसार ड्राफ्ट ईएपी को अब सभी पावर स्टेशनों को परिचालित किया जा चुका है। सभी आवश्यक अनुपालनों को ध्यान में रखते हुए जल्दी ही संबधित पावर स्टेशनों द्वारा इसे अंतिम रूप दिया जाएगा। एनएचपीसी ने यह भी कहा (अगस्त 2015) कि छः एनएचपीसी पावर स्टेशनों अर्थात् चमेरा-।, चुटक, नीम्मो बाजगो, दुल्हस्ती, उरी-।। तथा टनकपुर के बांधो/बराजों के लिए ईएपी को पहले ही पूरा किया जा चुका है। अन्य पावर स्टेशनों के ड्राफ्ट ईएपी भी बना लिए गये है तथा इन्हें छः माह के अन्दर अन्तिम रूप दे दिया जाएगा। डेम ब्रेक विश्लेषण के इनपुट, जहां भी उपलब्ध हो, को सम्मिलित तथा अद्यतित किया जाएगा।

एसजेवीएन ने कहा (अगस्त 2015) कि इन पहलुओं को समाविष्ट करते हुए एनजेएचपीएस के लिए नई आपातस्थिति तत्परता योजनाओं (ईपीपी) को तैयार कर लिया गया है जिसे 31 मई 2015 को प्रबंधन की स्वीकृति के लिए प्रस्तुत किया गया था।

एसजेवीएन प्रबंधन को सीडब्ल्यूसी दिशा-निर्देशों के अनुसार नई ईपीपी को प्राथमिकता के आधार पर स्वीकृत करने की आवश्यकता है।

6.6 एनएचपीसी के डीजीपीएस तथा टीपीएस में जून 2013 की बाढ़ से निपटने में देखी गई चूके


16 तथा 17 जून 2013 के बीच की रात में उत्तराखण्ड में एक विध्वंसकारी बाढ़ आई थी जिसने डीजीपीएस के सभी कॉम्प्लेक्सो में विनाशकारी स्थिति उत्पन्न की। टीपीएस ने भी इस बाढ़ के कारण क्षिति का सामना किया।

लेखापरीक्षा ने नियमबद्ध प्रावधानों के संदर्भ में 16-17 जून 2013 की बाढ़ से पूर्व प्रचलित परिचालनात्मक स्थितियों की जांच की तथा यह पाया कि दोनो पावर स्टेशनों ने विभिन्न नियमबद्ध आवश्यकताओं की अनदेखी की, जिनकी अनुपालना से आपदा का प्रतिकूल प्रभाव कम हो सकता था। पावर स्टेशन-वार अवलोकन निम्नानुसार है:

6.6.1 एनएचपीसी का डीजीपीएस

3210 क्यूमेक की डिजाइन बाढ़ के साथ डीजीपीएस को निर्मित किया गया था। धौलीगंगा बांध को धौलीगंगा नदी (धौलीगंगा तथा काली निदयों के संगम के 5 किमी अपस्ट्रीम) पर बनाया गया था, जबिक टर्बाइन से निकले जल को ड्राफ्ट ट्यूबो के माध्यम से एक उभयनिष्ठ टेल रेस टनल में छोड़ा जाता था जिसके द्वारा जल को एलगाड नाले के उस स्थान तक स्नावित किया जाता था जो काली नदी के साथ इसके संगम के बिल्कुल अपस्ट्रीम में था।

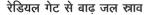
16-17 जून 2013 की बाढ़ के दौरान (3210 क्यूमेक डिजाइन बाढ़ की तुलना में अधिकतम बहाव केवल 2051.72 क्यूमेक होने के बावजूद) पावर स्टेशन घटकों को अत्याधिक क्षति पहुँची उदाहरणतः विद्युत गृह कार्यालय तल के आधे स्तर (ईएल 1045 एम) तक जलमग्न हो गया तथा सभी तलो²³ पर गाद का भारी संग्रहण हो गया, टेल रेस टनल का निकास द्वार जाम हो गया, उप स्टेशन के समीप चार पोल संरचना पानी में बह गई जिसके कारण पावर हाऊस के लिए ग्रिड पावर आपूर्ति की उपलब्धता नहीं रही।

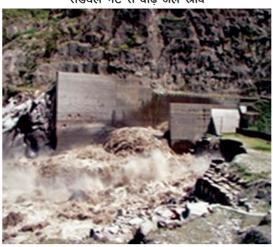
धौलीगंगा पावर हाउस में बाढ़ आना

²³ अर्थात गोल वाल्व</sup> फ्लोर (ईएल 1025 एम), टर्बाइन फ्लोर (ईएल 1029 एम), मध्यवर्ती फ्लोर (ईएल 1033 एम) तथा जनरेटर फ्लोर (ईएल 1039 एम) तथा कार्यालय फ्लोर (ईएल 1045 एम)

इसके अलावा, बी-टाइप क्वार्टरों के आठ ब्लॉक (48 क्वार्टर) पूर्ण रूप से बह गए थे, सी तथा डी टाइप क्वार्टर, फील्ड होस्टल, को आपरेटिव स्टोर, नर्सरी स्कूल, वर्कशॉप, कॉलोनी की सड़के, सेन्ट्रल इण्डस्ट्रियल सिक्यूरिटी फोर्स कॉलोनी तथा दोबत स्थित केन्द्रीय स्टोर को अत्यधिक क्षति पहुंची। इस संदर्भ में एनएचपीसी ने 17 जून 2013 की आपदा के तुरंत बाद एमओपी को सूचित किया कि पिछले दो दिनों के दौरान पीथोरगढ़ जिले के धारचुला क्षेत्र के अपस्ट्रीम में बादल फटने तथा अभूतपूर्व भारी वर्षा के परिणाम स्वरूप काली नदी में आई बाढ़ की वजह से जल ने टीआरटी में प्रवेश किया तथा विद्युत गृह की सभी प्रणालियाँ 17 जून 2013 के प्रारम्भिक घंटो में जलमगन हो गई। इसके अलावा, एनएचपीसी निगम कार्यालय के एक दल, जिसमें कार्यकारी निदेशक (परियोजना), कार्यकारी निदेशक (वाणिज्यिक) तथा जीएम (डिजाइन तथा इंजीनियरिंग) शामिल थे तथा जिन्होंने 19 तथा 20 जून 2013 को विद्युत गृह स्थल तथा डीजीपीएस के कॉलोनी क्षेत्रों का दौरा किया था, ने 21 जून 2013 को अपनी रिपोर्ट प्रस्तुत की जिसमें उन्होंने क्षित की सीमा तथा किए जाने के लिए अपेक्षित बहाली कार्यों का वर्णन किया। इसके अतिरिक्त, डीजीपीएस ने घटना क्रम पर एक रिपोर्ट बनाई (21 जून 2013)। रिपोर्टों ने घटनाओं के क्रमों की तथा बाढ़ के प्रभाव को कम करने के प्रयासों की पर्याप्तता की जांच आलोचना-त्मक रूप से नहीं की। बहाली कार्य विद्युत गृह की डिवाटरिंग के साथ जुलाई 2013 से प्रारम्भ हुए तथा डीजीपीएस की चार उत्पादन यूनिटों में से तीन को मई-जून 2014 में पुनः चालू किया गया था। यूनिट संख्या 1 से विद्युत उत्पादन 22 मई 2015 को शुरू किया गया।

लेखापरीक्षा ने जलाशय परिचालन नियमावली (आरओएम) में निर्धारित प्रावधानो के संदर्भ में वास्तविक जलाशय परिचालन परिस्थितियों तथा विद्युत गृह में बाढ़ के आने से पहले घटी घटनाओं के क्रमों की जांच की तथा निम्नलिखित चूकें पाई:


- (i) आरओएम की आवश्यकता के विरुद्ध, डीजीपीएस के पास 2 घंटे पहले अग्रिम सूचना प्रदान करने के लिए अपस्ट्रीम में कोई गैज एवं डिस्चार्ज (जीएंडडी) स्थल नहीं था। डीजीपीएस की व्यवहार्यता रिपोर्ट (एफआर) ने भी धौलीगंगा के अपस्ट्रीम में एक या दो स्वचालित चेतावनी स्टेशनो की संस्थापना की आवश्यकता का प्रस्ताव²⁴ दिया था। इसके अलावा, आरओएम के अनुसार टेल रेस चैनल के आउटफॉल पर भी एक गैज स्थल स्थापित करना अनिवार्य था जहाँ से मानसून सीजन के दौरान प्रत्येक आधे घंटे के अन्तराल पर ली गई रीडिंस बांध के ऊपर स्थित नियंत्रण कक्ष को सूचित किया जाना अपेक्षित था। हालांकि, डीजीपीएस ने बिना कोई कारण दर्ज किये, जून 2012 के पश्चात टेल रेस चैनल (काली नदी) के आउटफॉल पर जीएंडडी डाटा रखना बन्द कर दिया।
- (ii) आरओएम ने जलाशयों की जीवंत क्षमता क्षेत्र में तलछट संग्रहण को कम करने के साथ-साथ अचानक आई बाढ़ के प्रबंधन के लिए मानसून अविध (1 जून से 15 अक्तूबर तक) के दौरान जलाशय स्तर को न्यूनतम ड्रा डाउन स्तर (ईएल 1330 एम) पर रखने का प्रावधान किया था। इसके बजाय, जलाशय को, 11 तथा 12 जून 2013 को छोड़कर, जब यह क्रमशः 1338.80 मी तथा 1337.49 मी था, 1 जून से 16 जून 2013 तक जलाशय का स्तर पूर्ण जलाशय स्तर (अर्थात 1345 मी) के आस-पास रखा गया था।


²⁴ छीरकला तथा तवाघाट दोनों पर स्ट्रीम प्रवाह रिकार्डों के आधार पर यह निष्कर्ष निकाला गया कि अधिक बाढ़ के दौरान धौलीगंगा में जलस्त्राव में वृद्धि बहुत तीव्र थी जो तीव्र बाढ़ के दौरान और भी बढ़ सकती थी। एफआर के अनुसार अपट्रीम क्षेत्र में नदी के नीचे एक दबाव सेंसर वाले स्वचालित रिकार्डिंग स्टेशन को एक टेली मॉटरिंग तंत्र से जोड़ा जा सकता था जो निरंतर अथवा जब जल स्तर बहुत ऊपर हो तब नदी स्तर पर डाटा प्रसारित कर सकता था। क्षेत्रीय स्टेशन से प्राप्ति स्टेशन पर संकेतों के प्रसारण को सेटेलाइट या रेडियो लिंक के द्वारा प्रबंधित किया जा सकता था।

घंटे पश्चात ही लिया गया।

आरओएम के प्रावधानो²⁵ के अनुसार मई (iv) तथा जून 2013 में किए जाने वाले फलशिंग परिचालनो को इस तथ्य के बावजूद नहीं किया गया कि बाढ़ आने की तिथि (16-17 जून 2013) तक आरओएम मे वर्णित जून माह में फलशिंग करने के लिए आवश्यक, 150 क्यूमेक से अधिक जलप्रवाह होने की परिस्थिति 09 जून 2013 से 11 जून 2013 तक विद्यमान थी। आरओएम में प्रावधान किया गया था कि यदि 500 क्यूमेक परिमाण की बाढ़ आती है तो तलछट फ्लाशिंग परिचालन

बाढ की प्रचंडता को दर्शाने वाला चित्र

किया जाना चाहिए। हालांकि, नदी अन्तप्रवीह 16 जून 2013 के 0100 बजे से निरंतर 500 क्यूमेक से अधिक था, डीजीपीएस ने 16 जून 2013 के 0900 बजे से फ्लिशिंग आरम्भ की।

बाढ के कारण धौलीगंगा डेम क्षेत्र में क्षति

²⁵ प्रथम गाद फ्लिशिंग 1 मई तथा 31 मई के बीच की जानी चाहिए जब जलप्रवाह 110 क्यमेक से अधिक हो तथा यदि जलनिकासी 110 क्यूमेक से अधिक न हो तो जलप्रवाहकी मात्राकी उपेक्षा करते हुए फ्लशिंग 31 मई को करनी चाहिए। दूसरी फ्लशिंग 1 जून तथा 30 जून के बीच की जानी चाहिए जब जलप्रवाह 150 क्यूमेक से अधिक हो तथा यदि जलप्रवाह 150 क्यूमेक से अधिक न हो तो, जलप्रवाह की मात्रा की उपेक्षा करते हुए फ्लशिंग 30 जून की जानी चाहिए।

(v) डीजीपीएस की डीएमपी में प्रावधान था कि विद्युत गृह में बाढ़ आने की स्थिति में, डीटी गेट²⁶ को नीचा करने के लिए प्रभारी परिचालन द्वारा अनुरक्षण स्टॉफ को सूचित किया जाना चाहिए तथा ज्यों ही गेट नीचे हो तो डीटी ड्रेन वाल्व को खोला जाना चाहिए।

हालांकि बाढ़ से ठीक पूर्व पावर हाउस में दर्ज घटनाओं के क्रम से यह देखा गया कि उस दौरान किसी भी अवसर पर प्रचालन प्रभारी द्वारा अनुरक्षण कर्मचारियों से डीटी गेट नीचे गिराने के लिए नहीं कहा गया। परिणामस्वरूप टेल रेस टनल से पावर हाउस में पानी घुस गया और इसे क्षतिग्रस्त कर दिया।

एनएचपीसी ने कहा (अगस्त 2015) कि (i) 01 जून 2015 से बाँध के 5 किमी. अपस्ट्रीम में जीएण्डडी साइट को पुनः स्थापित कर दिया गया था और डिस्चार्ज रीडिंग नियमित रूप से दर्ज की जा रहा थी। टेल रेस टन्नल (काली नदी) के आउटफाल पर जीएण्डडी साइट के संबंध में ऐसा नहीं किया जा रहा था क्योंकि यह पावर स्टेशन के लिए बहुत अधिक प्रसंगिक नहीं था, (ii) उत्पादन बाधाओं और नदी प्रवाह को देखते हुए डीजीपीएस के जलाशय का स्तर रखा जा रहा था। हालांकि पावर स्टेशन को आरओएम के अनुसार जलाशय स्तर बनाए रखने हेत् सचेत कर दिया गया है, (iii) गाद मापने हेत् छानने और सुखाने की विधि के अतिरिक्त एक समानांतर गाद मापन विधि श्रूक कर दी गई थी जो आधे घंटे के अंतराल पर गाद दर्शाने में सक्षम थी। (iv) संयंत्र की पुनर्स्थापना के पश्चात सभी फल्शिंगस आरओएम दिशा-निर्देशों के अनुसार की जा रही थी और भविष्य में भी इसे सुनिश्चित किया जाएगा, और (v) पावर स्टेशन में डीटी गेट अनुरक्षण उद्देश्य से लगाए गए थे न कि पावर हाउस में बाढ़ रोकने के लिए। यदि डीटी गेट नीचे भी किए गए होते तो अन्य गैलरी/ खुली जगहों से पावर हाउस में पानी घुस सकता था। डीटी गेट को नीचे गिराने का कोई प्रोटोकॉल नहीं था। इसके बावजूद भी अत्यधिक सतर्कता उपाय के रूप में अधिक बाढ़ की स्थिति में डीटी गेटों को नीचे गिराने के निर्देश जारी किए गए हैं। अभूतपूर्व परिस्थितियों में जलस्तर बहुत तेजी से बढ़ा था. जिसमें डीटी गेटों को नीचे गिराने का समय ही नहीं था। उस समय प्रचालन कर्मचारियों का ध्यान लाइन सर्किट और अन्य विद्युत प्रणालियों को बंद करने और वास्तविक प्राण हानि खतरे से स्रक्षित बच निकलने पर था। एक्जिट कांफ्रेस (अगस्त 2015) में आगे कहा गया कि आरओएम के प्रावधानों का आपदा से कुछ संबंध नहीं था क्योंकि वे धौलीगंगा नदी से संबंधित थे जबकि टेल रेस टन्नल जहाँ से पावर स्टेशन में पानी घुसा था, एलागाड़ नाला में खुलता था।

उत्तर को इस तथ्य के मद्देनजर देखा जाए कि (i) टेल रेस टन्नल के आउटफाल पर गेज साइट बनाए रखना और आधे घंटे के अंतराल पर रीडिंग लेना आरओएम के प्रावधानों के अनुसार था। अतः इसे अप्रासंगिक नहीं माना जा सकता है। (ii) सीईए ने मार्च 2007 में हाइड्रोइलेक्ट्रिक स्टेशनों को बाढ़ से बचाने हेतु डीटी गेटों को बंद करने की सिफारिश की थी जिसे डीजीपीएस के डीपीएम (नवम्बर 2007) में भी शामिल किया गया था। अतः डीजीपीएस के डीपीएम में उल्लिखित प्रोटोकॉल के अनुसार डीटी गेटों को बंद करना चाहिए था। (iii) बाँध रोजनामचे से यह देखा गया कि 16 जून 2013 को 06:00 बजे जल प्रवाह 579.14

इपिट ट्यूब टर्बाइन की नीचे की रिंग तथा टेल रेस के बीच होती है। यह रनर से टेल रेस टनल में जलखाव के पश्चात जल को ले जाती है। ड्रॉफ्ट ट्यूब (डीटी) गेटो को टबाईन का अनुरक्षण करने से पूर्व पावर हाऊस तथा टेल पूल को अलग करने के लिए प्रदान किया जाता है। डीटी गेट तंत्र को ऊपर उठाने के लिए अनुबंधित है। ड्राफ्ट ट्यूब गेट को तब बन्द रखा जाता है जब सम्बंधित टर्बाइन अनुरक्षण में होती है। 3.8 मी x 3.0 मी के ओपनिंग साइज के लिए चार ड्राफ्ट ट्यूब गेटो को टेल रेस साइड से जल के बैकफ्लो से बचने के लिए डीजीपीएस में प्रदान किया गया है। चार डीटी गेट के परिचालन के लिए 10 टी क्षमता के चार विद्युतीय रोप ड्रम उत्तोलक भी प्रदान किए गए थे। गेट का कुल उत्तोलन 21.0 मीटर है। जबकि इन गेटो की लिफ्टिंग एवं लॉवरिंग स्पीड 0.5 मीटर प्रति मिनट थी। इस प्रकार डीटी गेट का लिफ्टिंग तथा लॉवरिंग समय 42 मिनट संगणित किया गया।

क्यूमेक्स से बढ़कर (6:20 पर विद्युत उत्पादन रोक दिया गया था) 20:00 बजे तक 1008.2 क्यूमेक्स हो गया था, अर्थात् जलप्रवाह 14 घंटो में लगभग दुगुना हो गया था और छः घंटे बाद अर्थात् 17 जून 2013 को 02:00 बजे विद्युत गृह में बाढ़ आई। इस प्रकार, डीटी गेट बंद करने के लिए प्रबंधन के पास पार्याप्त संकेत और समय उपलब्ध थे।

सीईए ने सिफारिश की (अगस्त 2015) कि विद्युत उदपादक जनोपयोगी संस्थाओं को विद्युत गृह में बाढ़ टालने के लिए उचित उपाय करने चाहिए।

6.6.2 एनएचपीसी का टीपीएस

टीपीएस को 7.02 लाख क्यूसेक²⁷ (अथवा 19879 क्यूमेक्स) बाढ़ गुजारने के लिए बनाया गया था। हालांकि, 17 जून 2013 को 5.34 लाख क्यूसेक (अथवा 15121 क्यूमेक्स) बाढ़ से निपटने के दौरान ही पावर स्टेशन को भारी क्षति पहुँची और इसके पावर चैनेल में गाद भर गई। क्षतियों को ठीक करने और पावर चैनेल की सफाई में 11 जनवरी 2014 से 28 मार्च 2014 तक टीपीएस को पूरी तरह से बंद रखना पड़ा था। लेखापरीक्षा ने जून 2013 की बाढ़ से निपटने में टीपीएस की ओर से निम्नलिखित किमयाँ देखी:

(i) अग्रिम सूचना हेतु प्रणाली की अनुपलब्धता

अगस्त 1999 में संशोधित टनकपुर बैराज के विनियामक नियमों के अनुसार मॉनसून-2000 से पूर्व पंचेश्वर में एक पूर्वानुमान स्टेशन स्थापित किया जाना था। एनएचपीसी के निगम कार्यालय ने नदी में बाढ़ की पूर्व चेतावनी देने के लिए परियोजना के जलग्रहण क्षेत्रों में डिस्चार्ज मापन प्रणाली स्थापित करने के लिए टीपीएस को फिर से निर्देश दिया (मार्च 2007) तािक विद्युत गृह को बंद करने हेतु समय पर कार्रवाई की जा सके। हालांकि, टीपीएस ने बराज के अपस्ट्रीम में ऐसी कोई प्रणाली नहीं लगाई थी।

एनएचपीसी ने बताया (अगस्त 2015) कि उपलब्ध गेटों से बिना किसी समस्या के बाढ़ का पूरा पानी निकाल दिया गया था। पावर स्टेशन को समय पर बंद कर दिया गया था और उत्पादन उपकरण की कोई क्षिति नहीं हुई थी। हालांकि एनएचपीसी ने आगे कहा (अगस्त 2015) कि पंचेश्वर में पूर्व में प्रस्तावित जीएण्डडी साइट की समीक्षा की गई और इसे अब टनकपुर बैराज से लगभग 20 किमी दूर पूर्णा गिरी मंदिर की फुटहिल्स पर दूरमापी प्रणाली के साथ प्रस्तावित किया गया था।

उत्तर को इस तथ्य की दृष्टि से देखा जाए कि उपलब्ध गेटों से बाढ़ का पूरा पानी निकल सकता था, परंतु टनकपुर बैराज विनियमों के अनुसार कड़ाई से गेटों का प्रचालन नहीं किया गया, जैसा कि आगामी पैरा में चर्चा की गई है, जिसके कारण पावर चैनल में गाद पहुँच गई। गाद की सफाई के लिए टीपीएस को ₹2.79 करोड़ का व्यय करना पड़ा।

(ii) बाँध सुरक्षा दल की टिप्पणियों का गैर-अनुपालन

बाँध सुरक्षा दल ने मई 2012 और अप्रैल 2013 के बीच निरीक्षण करते समय लेफ्ट तथा राईट एफलक्स बंड²⁸ के कुछ स्थानों (अनुलग्नक 6.1 में दिए गए विवरण के अनुसार) और नदी तट को गंभीर क्षरण संबंधी क्षतियों से असुरक्षित होने का मुद्दा उठाया और मॉनसून प्रारम्भ होने से पूर्व इन स्थानों की मरम्मत का सुझाव दिया। हालांकि टीपीएस ने मॉनसून-2013 प्रारम्भ होने से पूर्व मरम्मत नहीं करवाई। परिणामस्वरूप टीपीएस को जून 2013 के बाढ़ के दौरान निम्नलिखित स्थानों पर महत्वपूर्ण हानियों का सामना करना पड़ाः

^{27 1} क्यूमेक = 35.314 क्यूसेक

²⁸ पुल/ढाँचा बनाकर प्रवाह (जलस्तर में अत्यधिक वृद्धि) के कारण बाढ़ के परिणामस्वरूप निचले क्षेत्रों को बाढ़ से सुरक्षा प्रदान करने के लिए अपस्ट्रीम एवं डाउनस्ट्रीम पर एफलक्स बंद बनाए जाते है।

- (i) लेफ्ट एफलक्स बंड आरडी 200 मी. और आरडी 260 मी. के बीच बहुत अधिक क्षतिग्रस्त हो गया। जल प्रवाह के प्रभाव को कम करने के लिए इस विस्तार क्षेत्र में किये गये सभी उपाय जैसे- आवरण, रोक दीवार, लांचिंग एप्रन, आदि बह गए:
- (ii) राईट एफलक्स बंड का पिछले भाग के अपस्ट्रीम में नदी द्वारा मार्ग परिवर्तन से दाहिने किनारे के क्षरण के साथ-साथ शारदा घाट बाजार के माध्यम से निचले क्षेत्रों में जल का बहाव:
- (iii) मिलिट्री इंजीनियरिंग सेवा क्षेत्र में पावर चैनल के संरेखण बाँध के डाउनस्ट्रीम में नदी के दाहिने किनारे का क्षरण हो गया। आरडी 4650 मी. से 4880 मी. के मध्य स्पर्स के बीच गैबियंस/वायर क्रेट्स²⁹ सहित पाँच स्पर्स³⁰ पूरी तरह से बह गए।

इस प्रकार बाँध सुरक्षा दल द्वारा सुझाए गए मरम्मत के कार्य यदि मुस्तेदी से किए जाते तो जून 2013 की बाढ़ से निपटने में टीपीएस द्वारा हानियों को कम किया जा सकता था।

एनएचपीसी ने कहा (अगस्त 2015) कि टनकपुर बैराज के लेफ्ट तथा राईट एफलक्स बंड मिट्टी की सामग्री से बनाये गये है। ऐसी उच्च बाढ़ की स्थिति में ऐसे बंड का क्षरण नहीं रोका जा सकता है। कम प्रवाह अविध के दौरान इन बाँधों की मरम्मत की गई थी। मरम्मत के लिए बैराज का खाली रखना पड़ा जिसकी वजह से उस अविध के दौरान पावर स्टेशन को बंद रखा गया। कम प्रवाह अविध में विद्युत उत्पादन की हानि न्यूनतम थी।

उत्तर को इस तथ्य के मद्देनजर देखा जाए कि (i) टीपीएस को 7.02 लाख क्यूसेक बाढ़ का पानी गुजरने के लिए बनाया गया था, जबिक 2013 का बाढ़ के दौरान अधिकतम प्रवाह केवल 5.34 लाख क्यूसेक था। (ii) बांध सुरक्षा दल द्वारा बताई गई किमयों के मॉनसून प्रारम्भ होने से पूर्व सुधारने में प्रबंधन की विफलता से बाँध सुरक्षा निरीक्षण का कोई मतलब नहीं रहा। मई 2012 में बाँध सुरक्षा दल द्वारा बताई गई किमयों 2012-13 के सूखे मौसम सिहत एक वर्ष से अधिक समय तक सुधारा नहीं गया। मरम्मत बाद में 2013-14 को सूखे मौसम में की गई थी। कार्य के महत्व को देखते हुए बाढ़ के कारण भारी हानियों को कम करने के लिए 2013 के मानसून के शुरू होने से पूर्व कार्यों को शीघ्रता से निपटाए जाने की आवश्यकता थी।

(iii) निर्धारित दिशा-निर्देशों के अनुसार गेटों का गैर-प्रचालन

टनकपुर बैराज विनियम नियमावली में बैराज के गेटों के प्रचालन के लिए निम्नलिखित मानदण्ड का प्रावधान थाः

- 1800 क्यूसेक तक अण्डर स्लूस (1 से 5 और 19 से 22) गेट को प्रचालित किया जाए।
- 1800 क्यूसेक से 5660 क्यूसेक के बीच के प्रवाह को बैराज के गेट (6 से 18 गेट) के माध्यम से नियंत्रित किया जाए।
- 5660 क्यूसेक के बाद सभी गेट पूरी तरह से प्रचालित होंगे।

²⁹ जस्तेदार तार की एक बड़ी जाली को चट्टानों से भरकर बनाई दीवार गैबियन ढाँचे के लचीलेपन से कंक्रीट या अन्य सामग्री के बने ढ़ाचे की अपेक्षा बिना दरार या तोड़ के दबाव वहन किया जा सकता है।

³⁰ स्पर्स नदी के प्रवाह को दूर रखकर इसके किनारों की सुरक्षा बनाए जाते है।

हालांकि, लेखापरीक्षा ने देखा कि 17 जून 2013 की बाढ़ के दौरान, उपरोक्त दिशा-निर्देशों के अनुसार गेटों का प्रचालन नहीं किया गया था। यद्यपि नदी का प्रवाह 17 जून 2013 को 0700 बजे 5788 क्यूसेक से बढ़कर 18 जून 2015 को 0000 बजे 15140 क्यूसेक तक पहुँच गया, तब भी नियमानुसार सभी गेटों का प्रचालन नहीं किया गया। गेट सं. 3 और 22 को नहीं खोला गया और 17 तथा 18 जून 2013 को पूरे समय बंद पड़े रहे। हेड रेगुलेटर (इनटेक स्ट्रक्चर) के सामने जमी गाद की सफाई के लिए गेट सं. 1 और 2 को खोलना महत्वपूर्ण था। किंतु गेट सं. 1 और 2 का पूर्णतः प्रचालन नहीं किया गया था। परिणामस्वरूप हेड रेगुलेटर के सामने जमा गाद बाढ़ के पश्चात 19 जून 2013 को ऊर्जा सृजन पुनः बहाल करने में पावर चैनल में घुस गई। टीपीएस को ₹ 2.79 करोड़ की लागत पर पावर चैनल में जमा 1.32 लाख क्यूबिक मी गाद की सफाई में 11 जनवरी 2014 से 28 मार्च 2014 तक पावर स्टेशन को पूरी तरह से बंद रखना पड़ा।

टीपीएस ने बताया (दिसम्बर 2014) कि (i) गेट सं. 3 बंद था क्योंकि इसकी मरम्मत की जा रही थी, तकनीकी कितनाई के कारण गेट सं. 22 को नहीं खोला जा सका; नियंत्रण कक्ष के डाउनस्ट्रीम साइड में कंद्रा भरने के लिए चल रहे सिविल निर्माण कार्य के कारण गेट सं. 1 को सीमित तरीके से खोला गया था और गेट सं. 2 को आवश्यकतानुसार 1 मीटर से 6 मीटर तक खोला गया था। एनएचपीसी ने आगे बताया (अगस्त 2015) कि वास्तविक बाढ़ की निकासी हेतु गेट खोलना पर्याप्त था क्योंकि गेट से ऊपर बहाव नहीं था इसलिए क्षिति गेट न खोलने के कारण नहीं थी।

उत्तर को इस तथ्य के मद्दनजर देखा जाए कि (i) टीपीएस ने यह सुनिश्चित नहीं किया कि मॉनसून प्रारम्भ होने से पूर्व बैराज के सभी गेट चालू हालत में थे और गेट खोलने में बाधा उत्पन्न करने वाले बैराज के सभी कार्यों को मॉनसून मौसम शुरू होने से पूर्व समाप्त कर लिया गया था। (ii) यद्यपि गेट के ऊपर बहाव नहीं था, तथापि टनकपुर बैराज विनियम नियमावली के प्रावधानों के अनुसार गेट न खोलने के कारण पावर स्टेशन में क्षिति हुई जिसके कारण हेड रेगुलेटर में गाद का जमाव हुआ जो कि बाद में पावर चैनल में आ गई।

6.7 विभिन्न आपातकाल स्थितियों के लिए मॉक ड्रिल आयोजित न करना

पावर स्टेशनों के डीएमपी के अनुसार विभिन्न आपातकालीन स्थितियों से निपटने के लिए नियमित अंतराल पर मॉक ड्रिल आयोजित की जानी थी। 31 मार्च 2014 को समाप्त पिछले पांच वर्षों के दौरान विभिन्न पावर हाऊसेज़ द्वारा जिन संभावित संकटपूर्ण स्थितियों पर मॉक ड्रिल नहीं किये गये। उनका विवरण नीचे दिया गया है:

तालिका 6.2 आपातकालीन स्थितियाँ जिन पर पावर स्टेशनों में मॉक ड्रिल आयोजित नहीं की गई

क्र.	पावर स्टेशन और	आपातकालीन स्थितियाँ जिन पर 31 मार्च 2014 को समाप्त पांच
सं.	सीपीएसई का नाम	वर्षों के दौरान पावर स्टेशनों में मॉक ड्रिल आयोजित नहीं की गई
1	बैरास्यूल(एनएचपीसी)	बम खतरा, आतंकवादी हमला, पावर हाउस में बाढ़ एवं भूकंप
2	टनकपुर(एनएचपीसी)	बम खतरा, आतंकवादी हमला, पावर हाउस में बाढ़ एवं भूकंप
3	चमेरा-I(एनएचपीसी)	पावर हाउस में बाढ़ एवं भूकंप
4	उरी-I(एनएचपीसी)	आग से खतरा, पावर हाउस में बाढ़ एवं भूकंप
5	धौलीगंगा(एनएचपीसी)	पावर हाउस में बाढ़ एवं भूकंप

क्र.	पावर स्टेशन और	आपातकालीन स्थितियाँ जिन पर 31 मार्च 2014 को समाप्त पांच
सं.	सीपीएसई का नाम	वर्षों के दौरान पावर स्टेशनों में मॉक ड्रिल आयोजित नहीं की गई
6	तीस्ता-V (एनएचपीसी)	बम हमला, आतंकवादी हमला, पावर हाउस में बाढ़ एवं भूकंप
7	चमेरा-III(एनएचपीसी)	बम हमला, आग से खतरा, आतंकवादी हमला, पावर हाउस में
		बाढ़ एवं भूकंप
8	चुटक(एनएचपीसी)	बम हमला, आग से खतरा, आतंकवादी हमला, पावर हाउस में
		बाढ़ एवं भूकंप
9	एनजेएचपीएस(एसजेवीएन)	पावर हाउस में बाढ़ एवं भूकंप
10	टीएचपीएस(टीएचडीसी)	पावर हाउस में बाढ़ एवं भूकंप
11	आईएसपी(एनएचडीसी)	भूकंप

एनएचपीसी ने कहा (फरवरी 2015) कि आगामी वित्तीय वर्ष अर्थात 2015-16 में सभी संबंधित मॉक ड्रिल निर्धारित मानकों और दिशा-निर्देशों के अनुसार आयोजित किए जाएंगे।

एसजेवीएन ने बताया (अगस्त 2015) कि सेना और जिला प्रशासन के सहयोग से 15 जनवरी 2015 और 07 जुलाई 2015 को बाढ़ पर मॉक ड्रिल आयोजित किया गया था।

वर्ष 2015 में एसजेवीएन द्वारा की गई सुधारात्मक कार्रवाई की सराहना की जाती है और आगामी लेखापरीक्षा में इसकी निरंतरता का सत्यापन किया जाएगा।

टीएचडीसी ने बताया (मार्च/अगस्त 2015) कि पावर हाउस में बाढ़ और भूकम्प जैसी स्थितियों से निपटने के लिए विशेष मॉक ड्रिल की योजना बनाई जा रही थी। हालांकि सुरक्षा भंग और आग के खतरों से निपटने के लिए नियमित मॉक ड्रिल समय-समय पर की जा रही थी।

एनएचपीसी ने भविष्य में अनुपालन हेतु लेखापरीक्षा आपत्ति को नोट कर लिया।

मंत्रालय ने भी माना (अगस्त 2015) कि सभी सीपीएसईज़ द्वारा नियमित अंतराल पर सभी संभावित आपदाओं हेतु मॉक ड्रिल को आयोजित किया जाना चाहिए। इसके अलावा सभी परियोजनाओं में आपदा प्रबंधन में प्रशिक्षित एक टीम होनी चाहिए।

6.8 आपदा प्रबंधन पर प्रशिक्षण कार्यक्रम का अभाव

किसी भी डीएमपी के प्रभावी कार्यान्वयन हेतु, यह महत्वपूर्ण है कि विभिन्न लाभार्थियों को आवधिक प्रशिक्षण कार्यक्रमों, कार्यशालाओं, सम्मेलनों आदि के माध्यम से लगातार संवेदनशील बनाया जाए। लेखापरीक्षा ने निष्पादन लेखापरीक्षा हेतु चयनित पावर स्टेशनों के डीएमपीज़ में आपदा प्रबंधन पर प्रशिक्षण से संबंधित प्रावधानों की समीक्षा की और देखा कि 2009-14 के दौरान विभिन्न पावर स्टेशनों द्वारा आपदा प्रबंधन पर शून्य से पांच प्रशिक्षण कार्यक्रम और आग सुरक्षा, प्राथमिक उपचार पर शून्य से 45 प्रशिक्षण कार्यक्रम आयोजित किए गए थे जिसका विवरण नीचे दिया गया है:

तालिका 6.3 पावर स्टेशनों द्वारा आयोजित प्रशिक्षण कार्यक्रम

पावर स्टेशन का नाम	आपदा प्रबंधन पर प्रशिक्षण कार्यक्रमों से संबंधित डीएमपी प्रावधान	आयोजित	के दौरान प्रशिक्षण की संख्या	टिप्पणियाँ
		आपदा प्रबंधन पर	आग सुरक्षा प्राथमिक उपचार पर	
बेरास्यूल	एक वर्ष में दो बार किसी	शून्य	शून्य	
टनकपुर	विशेषज्ञ एजेंसी के माध्यम	4	10	प्राकृतिक आपदाओं द्वारा हुई
चमेरा-I	से पावर हाउस और बाँध के अधिकतम कर्मचारियों को	2	1	हानि के प्रबंधन पर प्रशिक्षण
धौलीगंगा	- आयकतम कमचारिया का - - आग और सुरक्षा उपकरणों	3	3	से संबंधित डीएमपीज़ में कोई प्रावधान नहीं था।
तीस्ता-V	की जानकारी और प्रशिक्षण	3	शून्य	7/14-1/1 (8/1-1/1
चमेरा-III	दिया जाएगा।	शून्य	शून्य	
चुटक		शून्य	शून्य	
नाथपा झाकरी	आपदा प्रबंधन पर कर्मचारियों के नियमित प्रशिक्षण से संबंधित कोई प्रावधान डीएमपी में नहीं था	शून्य	16	प्राकृतिक आपदा के कारण हुई आपदा से निपटने के लिए कोई प्रशिक्षण कार्यक्रम आयोजित नहीं किया गया
टिहरी हाइड्रो	मॉनसून शुरू होने से पूर्व वर्ष में एक बार	5	45	
इंदिरा सागर	आपदा प्रबंधन पर आयोजित किए जाने वाले प्रशिक्षण कार्यक्रमों की संख्या और आवृत्ति के संबंध में डीएमपी में कोई प्रावधान नहीं था।	4	शून्य	बाहरी एजेंसियों के माध्यम से आयोजित चार प्रशिक्षण कार्यक्रमों में केवल 7 कर्मचारियों को प्रशिक्षण दिया गया था।

एनएचपीसी ने कहा (फरवरी 2015) कि आगामी वित्तीय वर्ष 2015-16 में टीपीएस के साथ-साथ अन्य पावर स्टेशनों में निर्धारित प्रतिमानों और दिशा-निर्देशों के अनुसार सभी संबंधित प्रशिक्षण कार्यक्रम आयोजित किए जाएंगे।

एसजेवीएन ने कहा (अगस्त 2015) कि राष्ट्रीय सुरक्षा परिषद के माध्यम से 06 और 07 अगस्त 2015 को संयंत्र में सुरक्षा और आपदा प्रबंधन पर प्रशिक्षण कार्यक्रम आयोजित किया गया था।

एनएचडीसी ने कहा (अगस्त 2015) कि डीएमपी का विहंगम अद्यतनत किया जाना पहले ही शुरू कर दिया गया है। प्रशिक्षण कार्यक्रम की संख्या और आवृत्ति के प्रावधान उपयुक्त रूप में अद्यतित योजना में शामिल किए जाएंगे।

अध्याय - VII

मॉनीटरिंग प्रणाली

7.1 सीपीएसईज के पावर स्टेशनों में उत्पादन की मॉनीटरिंग दैनिक उत्पादन रिपोर्ट (डीजीआर) के माध्यम से की जाती है जो मशीनवार प्रचालन घंटे, उत्पादित बिजली, कारण सिंहत मशीन अनुपयोगी घंटा दर्शाता है। संरचनाओं और प्रणालियों की स्थिति की मॉनीटरिंग हेतु बाँध सुरक्षा जांच/तकनीकी जांच वर्ष में दो बार, एक बार मॉनसून से पूर्व (अप्रैल-मई में) और एक बार मॉनसून के बाद (अक्टूबर-नवम्बर में) किया जाता है।

प्रत्येक पावर स्टेशन का डीजीआर पावर स्टेशन को उच्चाधिकरियों में संबंधित निगम कार्यालयों और एनआरएलडीसी को प्रतियों सहित परिचालित की जाती है। बाँध सुरक्षा निरीक्षण निगम कार्यालय और पाँवर स्टेशन के सदस्यों वाली अतिरिक्त दल या बाँध सुरक्षा संगठन (डीएसओ) द्वारा किया जाता है जबकि तकनीकी निरीक्षण निगम के दल द्वारा किया गया था।

7.2 अप्रचालित यंत्र

लेखापरीक्षा ने देखा कि बाँध और अन्य संरचनाओं की स्थिति की मॉनीटरिंग के लिए लगाए गए बहुत सारे उपकरण काम नहीं कर रहे थे। इस संबंध में सीपीएसई वार अवलोकन इस प्रकार थे:

सीपीएसई	लेखापरीक्षा अवलोकन
का नाम	
एनएचपीसी	टनकपुर और धौलीगंगा में लगाए गए क्रमशः 95.65 प्रतिशत और 44.26 प्रतिशत
	उपकरण मई 2014 में चालू हालत में नहीं थे।
एसजेवीएन	2009 से तीन स्ट्रांग मोशन एक्सिलरोग्राफ में से केवल एक कार्य करने की स्थिति में था।
	2009 में बाँध सुरक्षा दल द्वारा अपने निरीक्षण में सिफारिश किए गए पांच माइक्रो-सिस्मिक
	रिकार्डर और चार इंक्लिनोमीटर अभी तक नहीं लगाए गए थे (मई 2015)।
टीएचडीसी	2009-2014 के दौरान टिहरी बाँध में कार्यशील उपकरणों का अनुपात 37.33 प्रतिशत,
	61.51 प्रतिशत और 27.5 प्रतिशत से घटकर क्रमशः 17.56 प्रतिशत, 60.97 प्रतिशत
	और 19.93 प्रतिशत हो गया था। निष्क्रिय उपकरणों की आत्यधिक संख्या को देखते हुए
	सीडब्ल्यूसी ने सिफारिश किया (दिसम्बर 2009) कि विश्वसनीय उपकरणों की पर्याप्तता और
	अतिरेकता के निर्धारण हेतु विश्लेषण किया जाए और सभी विश्वसनीय उपकरणों के प्रकार,
	स्थान और कार्यक्षेत्र की व्याख्या करते हुए एक परियोजना विशिष्ट यंत्रीकरण नियमावली
	विकसित की जाए। किंतु अब तक ऐसी कोई नियमावली विकसित नहीं की गई थी (सितम्बर
	2015)

एनएचपीसी ने बताया (अगस्त 2015) कि सभी पावर स्टेशनों पर निष्क्रिय उपकरणों की शीघ्रता से मरम्मत करने के लिए कार्रवाई की गई है। पावर स्टेशनों की मॉनीटरिंग प्रणाली को अब प्रभावी बना दिया गया है और इसे उच्चतम स्तर पर किया जा रहा था। बाध सुरक्षा और तकनीकी निरीक्षण टीम की अभ्युक्तियों पर समय बद्ध तरीके से कार्य किया जा रहा है। एनएचपीसी ने एक्जिट कॉन्फ्रेंस के दौरान बताया (अगस्त 2015) कि यह लघु, मध्यम एवं दीर्घ अविधयों के लिए महत्वपूर्ण उपकरणों को यथावत चिन्हित करके तीन माह के समय के अंदर यंत्र विन्यास नियमपुस्तक तैयार करने हेतु पहले ही प्रतिबद्ध है।

एसजेवीएन ने एनजेएचपीएस के संबंध में बताया (अगस्त 2015) कि स्ट्रॉग मोशन ऐसलेरो ग्राफस (एसएमएज) और माइक्रो सिस्मिक रिकार्डर (एमएसआरज) खराब थे और प्रौद्योगिकी के पुराने होने के कारण उन मॉड्यूलों पर कोई सेवा उपलब्ध नहीं थी। नए एसएमएज और एमएसआरज खरीदने और प्रतिष्ठापित करने के लिए कार्रवाई शुरू की जा रही थी। नाथपा बांध स्लोप पर चार इनक्लिनोमीटर प्रतिष्ठापित किए गए थे, किंतु उनके छिद्र चट्टान के टुकड़ों/मिट्टी से रूक गए थे। इन उपकरणों को कार्यशील बनाने के लिए प्रयास किए जा रहे थे।

एसजेवीएन के उत्तर को इस तथ्य के मद्देनजर देखे जाने की आवश्यकता है कि बांध सुरक्षा टीम की अभ्युक्तियों, जिनका बाध की प्रवृति पर भूकंप के प्रभाव की मॉनीटरिंग के महत्वपूर्ण पहलू पर प्रभाव था, का 2009 से समाधान नहीं किया गया था।

टीएचडीसी ने टीएचपीएस के संबंध में बताया (अगस्त 2015) कि (i) अधिकतर उपकरणों को फाऊंडेशन/चट्टान पर प्रतिष्ठापित किया गया था या संरचनागत कंक्रीट में छिपाया गया था और इसलिए, ये इस चरण पर कोई मरम्मत/प्रतिस्थापन करने के लिए पहुंच में नहीं थे; (ii) स्टेंडपाइप पीजोमीटर³¹, ट्राय-एक्सल जॉयंट मीटर³², टेप एक्सटैंशन मीटर³³ जैसे अतिरिक्त उपकरणों को प्रतिष्ठापित किया गया थाः और (iii) टीहरी बांध की तीन निरीक्षण गैलिरियां है जो बाध की दुरूस्तगी को सुनिश्चित करने के लिए निपटान एवं अन्य पैरामीटरों के संबंध में क्ले कोर जोन के प्रत्यक्ष निरीक्षण और निरंतर मॉनीटरिंग को सरल बनाती है।

हालांकि, तथ्य यह है कि दिसम्बर 2009 में सीडब्ल्यूसी द्वारा बताए जाने के बावजूद भी टीएचडीसी ने अभी तक विश्वसनीय उपकरणों की पर्याप्त मात्रा तथा अतिरेक का निर्धारण तथा सभी विश्वसनीय उपकरणों के प्रकार, स्थान तथा कार्यक्षेत्र का वर्णन करने वाली परियोजना विशिष्ट यंत्र विन्यास नियमावली का निरूपण नहीं किया है।

7.3 बांध के पूर्व और पश्च मॉनसून निरीक्षणों के अनुपालन में देखी गई किमयां

एनएडचपीसी

7.3.1 मई 2012 और अप्रैल 2013 में टीपीएस द्वारा बांध सुरक्षा निरीक्षणों के सुझावों के विस्तृत अनुपालन से 2013 में बाढ़ प्रबंधन अधिक प्रभावकारी रूप से किया होता। [बांध सुरक्षा दल के विस्तृत अवलोकन और टीपीएस द्वारा उसके अननुपालन पर (पैरा 6.6.2 (ii)) के अंतर्गत चर्चा की गई है]

एनएचपीसी ने आगामी अनुपालन हेतु लेखापरीक्षा अवलोकन को नोट किया और कहा (अगस्त 2015) कि अब बांध सुरक्षा दल के अवलोकनों की मामलों के सुलझाने या निपटाये जाने तक निगरानी की जा रही थी।

एसजेवीएन

7.3.2 वर्ष 2009 और 2013 हेतु बांध सुरक्षा संगठन (डीएसओ), नासिक की पश्च मॉनसून निरीक्षण रिपोर्ट से पता चला कि बांध पर मौसम-विज्ञान संबंधी उपस्करों के गैर-संस्थापन दिसम्बर 2014 तक भी दूर नहीं की गई थी। इसी प्रकार, सीडब्ल्यूसी दिशा-निर्देशों के अनुसार ईएपी की तैयारी से संबंधित 2012 के अवलोकन, विभिन्न संचालनात्मक परिस्थितियों आदि (अनुबंध 7.1 में ब्यौरा) के अंतर्गत बांध का वास्तविक व्यवहार आकलन करते हेतु बांध के संपूर्ण उपस्करीकरण की निगरानी और प्रचालन का प्रशिक्षण स्टाफ को दिया जाता था जिस पर एनजेएचपीएस द्वारा अव तक (दिसम्बर 2014) ध्यान नहीं दिया गया था जिससे ऐसे निरीक्षण का उद्देश्य समाप्त हो गया। यह भी इंगित करना प्रासंगिक है कि एसजेवीएन ने अंतिम निरीक्षण (दिसम्बर 2013) तक डीएसओ द्वारा किये गये पिछले किसी भी निरीक्षण के लिए अनुपालना प्रतिवेदन प्रस्तुत नहीं किये थे।

³¹ पौर जल दबाव को मापने के लिए

³² संरचनात्मक ज्वाइंट की मूवमेंट को मॉनीटर करने के लिए

³³ रॉक मास/स्ट्रक्चर की मूवमेंट को मॉनीटर करने के लिए।

एसजेवीएन ने कहा (अगस्त 2015) कि (i) मौसम-विज्ञान संबंधी उपस्कर की खरीद निविदाकरण के अंतिम चरण में थी और 2015-16 में ये उपस्कर संस्थापित किये जाऐंगे, (ii) एनजेएचपीएस हेतु नई आपातकाल तैयारी योजनाएं तैयार की गई और 31 मई 2015 को प्रबंधन के समक्ष अनुमोदन हेतु प्रस्तुत की गई, और (iii) संपूर्ण उपस्करीकरण की निगरानी का प्रशिक्षण दिसम्बर 2015 से पहले पूरा कर लिया जाएगा।

7.4 टिहरी बांध - टीएचडीसी हेतु सेटेलाईट आधारित वास्तविक समय अन्तर्वाह अनुमान संबंधी सीडब्ल्यूसी की सिफारिशों की अननुपालना

टीएचडीसी के प्रारूप परामर्शदाता के रूप में सीडब्ल्यूसी में टिहरी बांध जलाशय हेतु सेटेलाईट आधारित वास्तविक समय अन्तर्वाह अनुमान की एक रिपोर्ट तैयार की (अगस्त 2005)। इससे जलाशय में जल प्रवाह आने से संबंधित अग्रिम सूचना देकर बांध की सुरक्षा में सहायता मिलेगी और परिणामतः जलाशय संचालन में सहायता मिलेगी जिससे बांध की सुरक्षा होगी। इसके लिए सीडब्ल्यूसी ने नदी भागीरथी पर डबरानी, उत्तरकाशी, धरासू और नदी भिलांगना पर गंगी और घनसाली पर पांच जीएंडडी स्टेशन, 11 मौसम विज्ञान संबंधी स्टेशन और टिहरी/ऋषीकेश पर एक डिजीटल डायरेक्ट रीड आऊट ग्राऊडं स्टेशन स्थापित करने का भी प्रस्ताव रखा।

यद्यपि, लेखापरीक्षा ने अवलोकन किया कि प्रचालन के आठ वर्षों के बाद भी, टीएचपीएस ने सीडब्ल्यूसी द्वारा की गई सिफारिश के अनुसार वास्तविक समय अन्तर्वाह अनुमान प्रणाली को अभी तक (नवम्बर 2014) पूरा नहीं किया और केवल तीन जीएंडडी स्टेशनों का प्रचालन कर रही थी।

टीएचडीसी ने कहा (नवम्बर 2014) कि चूँकि वास्तविक समय अन्तर्वाह अनुमान प्रणाली के कार्य में विलम्ब हो रहा था, अतः तीन जीएंडी स्टेशन स्थापित किये गये थे, जिसमें से दो नदी भागीस्थी पर धरासू और नदी भिलागंना पर घनसाली के मैन्यूल स्टेशन थे और एक टिहरी पर जीरो पुल के पास स्वचालित जीएंडडी स्टेशन था। कोटेश्वर एचईपी के आरंभ होने के बाद जीएंडडी अवलोकन तीन स्थानों धरासु, घनसाली और कोटेश्वर से डाऊनस्ट्रीम में किये गये।

टीएचडीसी ने कहा (अगस्त 2015) कि वास्तविक समय अन्तर्वाह अनुमान प्रणाली का संस्थापन प्रक्रियाधीन है और जनवरी 2016 तक संस्थापित हो जाएगी।

अध्याय – VIII

निष्कर्ष और सिफारिशें

8.1 निष्कर्ष

- 8.1.1 हाईड्रोपावर ऊर्जा का नवीकरणीय, और पर्यावरण अनुकूल स्रोत है। चूँिक हाईड्रोपावर स्टेशनों में तात्कालिक प्रचालन के लिए निहित योग्यता होती है, अधिकतम मांग को पूरा करने और ऊर्जा प्रणाली की विश्वसनीयता को सुधारने के लिए वे अधिकतर अन्य ऊर्जा स्रोतों से अधिक प्रति क्रियाशील होते हैं। प्रचालन पावर स्टेशनों का निष्पादन सीईए और सीईआरसी जैसे नियामक निकायों द्वारा विनिर्दिष्ट विभिन्न पैरामीटरों जैसे क्षमता उपयोग, वार्षिक उत्पादन, बिक्री और राजस्व वसूली द्वारा किया जाता है।
- 8.1.2 किसी पावर स्टेशन की संस्थापित क्षमता का इष्टतम उपयोग यह सुनिश्चित करने के लिए महत्वपूर्ण है कि पावर स्टेशन को प्रभावी रूप से और कुशलतापूर्वक प्रचालित किया जा रहा है। टीएचपीएस को 830 मी. के पूर्ण जलाशय स्तर के लिए बहुआयामी परियोजना के रूप में डिजाइन किया गया था। टीएचडीसी द्वारा दी गई ₹ 972.97 करोड़ राशि के साथ राज्य सरकार द्वारा परिवारों का पुनर्वास किया गया था। तथापि टीएचडीसी को 825 मी. इएल से अधिक जलाशय को भरने की अनुमित अभी तक प्रदान नहीं की गई थी। लेखापरीक्षा ने अवलोकन किया कि निर्धारित जलाशय स्तरों पर अपर्याप्त पानी छोड़ने और गैर-अनुरक्षण के कारण 31 मार्च 2014 को समाप्त पांच वर्षों के दौरान क्रमशः 5.9 से 18 प्रतिशत और 3.9 से 13 प्रतिशत तक तीन एनएचपीसी पावर स्टेशन के सकल और जीवंत जलाशय क्षमताओं में कमी आई। पावर स्टेशनों की डिजाइन ऊर्जा टैरिफ की वसूली के लिए आधार प्रदान करता है और इसकी आवधिक समीक्षा की जानी अपेक्षित है तािक अंतिम उपयोगकर्ता पर बोझ न पड़े। एनएचपीसी के चमेरा-I पावर स्टेशन की डिजाइन ऊर्जा की समीक्षा नहीं की गई जबिक 1994-95 में अपने आरंभ होने से, यह पावर स्टेशन लगातार अपने डिजाइन ऊर्जा से ऊपर और अधिक काफी मात्रा की अतिरिक्त गौण ऊर्जा उत्पादित कर रहा था। परिणामस्वरूप, 2009-14 के दौरान उपभोक्ताओं पर ₹ 274.98 करोड़ तक का बोझ पड़ा।
- 8.1.3 सीपीएसईज़ का एक मुख्य उद्देश्य अधिकतम दक्षता के साथ पावर स्टेशनों को प्रचालित करना और अनुरक्षित करना है। इसे केवल बलात आउटज को कम करने हेतु प्रभावी निरोधक अनुरक्षण द्वारा ही प्राप्त किया जा सकता था। यह भी देखा गया कि पावर स्टेशनों की विभिन्न प्रणालियों में देखी गई किमयाँ इकाईयों के नियमित वार्षिक योजनाबद्ध अनुरक्षण के दौरान दूर नहीं की गई थी जिसके परिणामस्वरूप बलात आउटेज वहन करनी पड़ी। सीईआरसी द्वारा हाइड्रों पावर स्टेशनों के लिए निर्धारित प्रचालन प्रतिमानों के अनुसार, मानसून अवधि के दौरान सभी प्रकार के संयंत्रों के लिए 24 घंटें सभी मशीनों की उपलब्धता आवश्यक थी। तथापि, सीपीएसईज़ की मशीनों में 2009-14 की मानसून अवधि के दौरान औसतन 9871 घंटे की बलात आउटेज कटौती वहन की। टीएचपीएस में 293 घंटों से चुटक पावर स्टेशन में 2085 घंटों तक बलात आउटेज थी।
- 8.1.4 सीपीएसईज़ ने भुगतान सुरक्षा तंत्र के प्रावधानों के कार्यान्वयन में ढील दी क्योंकि एलसीज़ या तो अपेक्षित राशि के लिए प्राप्त नहीं किये गये थे या भुगतान के तरीकों के रूप में प्रयुक्त नहीं किये गये थे और चूककर्ता लाभार्थियों की ऊर्जा को समयबद्ध रूप से विनियमित नहीं किया गया था। एनएचपीसी ने एलसी की अपर्याप्त राशि के कारण अयोग्य लाभार्थियों को ₹ 60.48 करोड़ की छूट भी अनुमत की।

- 8.1.5 जम्मू-कश्मीर, उत्तराखंड, हिमाचल प्रदेश और सिक्किम में स्थित हाईड्रों पावर स्टेशन उच्च जोखिम भुकम्पीय क्षेत्र में आते हैं। ये पावर स्टेशन हिमालय क्षेत्र में स्थित हैं जो कि भारी बारिश विशेषतः मानसून में तथा बाढ़ और भुरखलन के प्रति संवेदनशील हैं। इसके अतिरिक्त, हिमालयी राज्यों में सङ्कों को छोड़कर परिवहन के अन्य साधनों का अभाव आपदा के समय हाईड्रोपावर स्टेशनों की अतिसंवेदनशीलता को बढ़ाता है। किसी संभावित आपदा स्थिति से निपटने के संगठित प्रयासों के महत्व को ध्यान में रखते हुए, भारत सरकार ने आपदा प्रबंधन अधिनियम, 2005 तैयार किया। अधिनियम में अपेक्षित है कि भारत सरकार का प्रत्येक मंत्रालय या विभाग राष्ट्रीय योजना के अनुरूप आपदा रोकने और राहत हेतू उपायों को विनिर्दिष्ट करते हुए एक आपदा प्रबंधन योजना (डीएमपी) तैयार करेगा। इसके अतिरिक्त अधिनियम में अपेक्षित है कि ऐसे डीएमपी की वार्षिक रूप से समीक्षा और संशोधन किया जाना चाहिए, तथापि पावर स्टेशनों ने अपने डीएमपीज़ की समीक्षा और उसे संशोधित नहीं किया जैसा कि निर्दिष्ट है। इसके अतिरिक्त, पावर स्टेशनों द्वारा तैयार किये गये डीएमपीज़ में बांध (बांध विखडंन विश्लेषण) के विफल/विखंडित होने के मामले में आपतकालीन कार्रवाई योजना को शामिल नहीं किया गया और आपदा प्रबंधन और राज्यों के आपदा प्रबंधन योजनाएं जैसे अग्रिम चेतावनी प्रणाली स्थापित करना, निर्धारित अवधियों के लिए प्रतिबद्ध ठेकों को अंतिम रूप देने संबंधी सीईए-दिशा निर्देशों के प्रावधानों को शामिल नहीं किया गया। हालांकि बाद मंं, सीपीएसई ने डीएमपीज़ की समीक्षा की प्रक्रिया को आरंभ किया था।
- 8.1.6 बांध साईटों के ऊपर अग्रिम चेतावनी केंद्रों को प्रभावी रूप से बाढ़ से निपटने के लिए तैयारी उपाय के रूप में स्थापित नहीं किया गया था। जून 2013 की बाढ़ से निपटते समय डीजीपीएस ने अपने जलाशय प्रचालन मैन्यूल की आवश्यकताओं की अनदेखी की जैसे (i) इसने न्यूनतम ड्रा डाउन स्तर की अपेक्षा पूरे जलाशय स्तर तक जल स्तर रखा (ii) मई और जून 2013 में अपेक्षित फ्लिशंग प्रचालन नहीं किये (iii) 30 मिनटके निर्धारित अंतराल की अपेक्षा दो घंटे के अंतराल पर गाद तत्व को मापा गया और (iv) टेल रेस टनल छोर से पावर हाउस में बाढ़ को रोकने के लिए ड्राफ्ट ट्यूब गेट बंद नहीं किए। इसके कारण पावर हाउस में बाढ़ आ गई। इसके बाद पावर स्टेशन के पुनरुद्धार के कारण, जून 2013 से मई 2014 तक डीजीपीएस से उत्पादन बंद रहा। जून 2013 के बाढ़ प्रबंधन के दौरान टनकपुर बैराज नियामक नियमावली की प्रावधानों की टीपीएस ने भी अनदेखी की और मरम्मत के लिए 11 जनवरी 2014 से 28 मार्च 2014 तक इसे पूर्णतः बंद करना पड़ा। फिर भी दिसम्बर 2014 तक, पावर स्टेशन भूकंप, पावर हाऊस में बाढ़ जैसी प्राकृतिक आपदाओं से निपटाने के लिए मॉक ड्रिल करने में विफल रहे।
- 8.1.7 हाइड्रो पावर स्टेशनों के प्रचालन और अनुरक्षण की प्रभावी निगरानी पावर स्टेशन की सुरक्षा और प्रभावी प्रचालन के लिए आवश्यक है। यद्यपि लेखापरीक्षा ने पाया कि सीपीएसई के बाँध और अन्य ढांचों पर उनकी स्थिति जांचने हेतु संस्थापित अधिकतर उपस्कर बांध सुरक्षा दलों द्वारा निरीक्षणों के दौरान प्रचालित नहीं पाये गये। एनएचपीसी और एसजेवीएन ने ऐसे उपस्करों की मरम्मत/प्रतिस्थापन के लिए प्रतिबद्धता जाहिर की थी। टीएचडीसी के मामले में, ऐसे अधिकतर उपस्करों को मरम्मत/प्रतिस्थापन के लिए पहुँच से बाहर बताया गया। तथापि, टीएचडीसी द्वारा सीडब्ल्यूसी द्वारा की गई सिफारिश के अनुसार सभी विश्वसनीय उपस्करों की प्रकार, स्थिति और कार्यक्षेत्र के विवरण वाले उपस्करीकरण मैन्यूल को तैयार कर मामले को निपटाने के लिए कार्रवाई की जानी बाकी थी।

8.2 सिफारिशें

पिछले अध्यायों में वर्णित लेखापरीक्षा निष्कर्षों के आधार पर हाईड्रो पावर स्टेशनों के प्रचालन और अनुरक्षण में सुधार करने के लिए निम्नलिखित सिफारिशें की जाती है:

8.2.1 विद्युत मंत्रालय

- (i) ईएल 830 मी. तक टीहरी जलाशय को न भरे जाने के लम्बे समय से लंबित मामले को त्वरित सुलझाने के लिए हस्तक्षेप करे ।
- (ii) उपभोक्ताओं के हितों एवं उत्पादक द्वारा लागत की उचित वसूली में संतुलन की राष्ट्रीय विद्युत नीति के उद्देश्य के अनुसार उन पावर स्टेशनों की डिजाइन ऊर्जा, जो लगातार एवं उल्लेखनीय अनुषंगी ऊर्जा का उत्पादन कर रहे है, की समीक्षा सीईए दिशानिर्देशों के अनुसार करने के लिए, यदि आवश्यक हो तो, नियामक सहित अन्य एजेंसियों के साथ समन्वय सुनिश्चित करे।

8.2.2 सीपीएसई

- (i) तलछट जमाव और उसके फलस्वरूप जलाशय क्षमता में ह्रास से बचने के साथ-साथ प्रभावी बाढ प्रबंधन के लिए जलाशय प्रचालन नियम-पुस्तिका के प्रावधानों के अनुसार जलाशय स्तर के नियमन और निर्धारित फ्लिशिंग प्रचालनों को सुनिश्चित करें।
- (ii) उचित ढंग से मशीनों का वार्षिक नियोजित अनुरक्षण करें ताकि बलात आउटेज न्यूनतम किए जा सकें ।
- (iii) एलसीज के खोलने/नवीकृत करने और छूट अनुमत करने संबंधित पीपीएज के प्रावधानों का अनुपालन सुनिश्चित करें एवं सीईआरसी विनियमों के अनुसार विद्युत के नियमन सिहत नियमित रूप से चूककर्ता लाभार्थियों से प्राप्यों की वसूली के लिए विभिन्न संभावनाओं की खोज करें।
- (iv) बॉध स्थल के अपस्ट्रीम पर, जहाँ संभव हो, एक अग्रिम चेतावनी प्रणाली स्थापित करें तािक बॉध, विद्युत गृह और बॉध के डाउनस्ट्रीम में रहने वाली आबादी की सुरक्षा सुनिश्चित करने के लिए सुरक्षात्मक उपाय किए जा सकें।
- (v) डीएमपीज की नियमित समीक्षा एवं अद्यतन सुनिश्चित करें तथा आपदाओं से निपटने हेतु प्रभावी ढंग से तैयार रहने के लिए पावर स्टेशनों द्वारा प्राकृतिक आपदाओं पर मॉक ड्रिल की न्यूनतम वार्षिक संख्या निर्धारित करें।
- (vi) बॉध स्थल एवं पावर हाउस पर प्रतिष्ठापित उपकरणों के कार्यचालन सहित सरंचनाओं की सुरक्षा से संबंधित सभी निरीक्षण दलों चाहे वह आंतरिक या बाहरी हो की आपत्तियों का अनुपालन शीघ्र सुनिश्चित करें।

एमओपी/सीपीएसईज़ द्वारा 8.2.1(ii) को छोड़कर सभी सिफारिशें सामान्यतः स्वीकार कर ली गई। 8.2.1(ii) सिफारिश के संबंध में, एमओपी ने कहा कि यह सीईआरसी द्वारा ध्यान रखने योग्य एक नियामक मुद्दा था। यद्यपि, लेखापरीक्षा महसूस करता है कि राष्ट्रीय विद्युत नीति के अनुसार बृहतर लोक हित के मद्देनजर एमओपी अपेक्षित कार्रवाई सुनिश्चित करने के लिए नियामक के साथ समन्वय करे।

नई दिल्ली

दिनांक: 13 नवम्बर 2015

(प्रसेनजीत मुखर्जी) उप नियंत्रक-महालेखापरीक्षक एवं अध्यक्ष, लेखापरीक्षा बोर्ड

प्रतिहस्ताक्षरित

नई दिल्ली

दिनांक : 13 नवम्बर 2015

भारत के नियंत्रक-महालेखापरीक्षक

अनुबंध

अनुबंध 1.1 (पैरा 1-3 देखें)

31 मार्च को देश की कुल प्रतिष्ठापित हाइड्रो पावर उत्पादन क्षमता में एनएचपीसी, एसजेवीएन, टीएचडीसी और एनएचडीसी की हिस्सेदारी और वर्ष 2009-10 से 2014-15 तक के लिए कुल हाइड्रो पावर उत्पादन को दर्शाने वाला विवरण

विवरण	2009-10	2010-11	2011-12	2012-13	2013-14	2014-15
देश में कुल प्रतिष्टापित हाइड्रो उत्पादन क्षमता (मे.वा)	36863	37567	38990	39491	40531	41267
एनएचपीसी की प्रतिष्ठापित	3629	3749	3749	4024	4831	4961
क्षमता (मे.वा)	(9.84%)	(9.98%)	(9.62%)	(10.19%)	(11.92%)	(12.02%)
एसजेवीएन की प्रतिष्ठापित	1500	1500	1500	1500	1500	1912
क्षमता (मे.वा)	(4.07%)	(3.99%)	(3.85%)	(3.80%)	(3.70%)	(4.63%)
टीएचडीसी की प्रतिष्ठापित क्षमता	1000	1000	1000	1400	1400	1400
(मे.वा)	(2.71%)	(2.66%)	(2.56%)	(3.55%)	(3.45%)	(3.39%)
एनएचडीसी की प्रतिष्ठापित	1520	1520	1520	1520	1520	1520
क्षमता (मे.वा)	(4.12%)	(4.05%)	(3.90%)	(3.85%)	(3.75%)	(3.68%)
उपरोक्त चार सीपीएसईज की	7649	7769	7769	8444	9251	9793
कुल प्रतिष्ठापित क्षमता (मे.वा)	(20.74%)	(20.68%)	(19.93%)	(21.38%)	(22.82%)	(23.72%)
देश का कुल हाइड्रो पावर उत्पादन (एमयूज)	103916	114257	130510	113720	134848	129244
एनएचपीसी द्वारा विद्युत उत्पादन	16960	18606	18683	18923	18386	22038
(एमयूज)	(16.32%)	(16.28%)	(14.32%)	(16.64%)	(13.63%)	(17.05%)
एसजेवीएन द्वारा विद्युत उत्पादन	7019	7140	7610	6778	7193	8096
(एमयूज)	(6.75%)	(6.25%)	(5.83%)	(5.96%)	(5.33%)	(6.26%)
टीएचडीसी द्वारा विद्युत उत्पादन	2117	3116	4591	4266	5582	4214
(एमयूज)	(2.04%)	(2.73%)	(3.52%)	(3.75%)	(4.13%)	(3.26%)
एनएचडीसी द्वारा विद्युत उत्पादन	3071	3197	4664	4161	5712	3691
(एमयूज)	(2.96%)	(2.80%)	(3.57%)	(3.66%)	(4.24%)	(2.86%)
उपरोक्त चार सीपीएसईज द्वारा कुल हाईड्रो पॉवर उत्पादन (एम यूज)	29167 (28.07%)	32059 (28.06%)	35548 (27.24%)	34128 (30.01%)	36873 (27.34%)	38039 (29.43%)

अनुबंध-2.1 (पैरा 2.5 देखें)

निष्पादन लेखापरीक्षा हेतु चयनित पावर स्टेशनों के ब्यौरे

क्र. सं.	पावर स्टेशन का नाम	वाणिज्यिक प्रचालन की तारिख	स्थान	नदी	मे.वा में यूनिट की संख्या और आकार	प्रतिष्टापित क्षमता (मे.वा)	पावर स्टेशन का प्रकार
1	बैरास्यूल	अप्रैल 1982	चंबा (एचपी)	बैरा, स्थूल और भालेद	3 x 60	180	पॉन्डेज सहित आरओआर
2	टनकपुर	अप्रैल 1993	चंपावत (उत्तराखंड)	सारदा	3 x 31.4	94.2	आरओआर
3	चमेरा-I	मई 1994	चंबा (एचपी)	रावी	3 x 180	540	पॉन्डेज सहित आरओआर
4	उरी-I	जून 1997	बारामुला (जे एवं के)	झेलम	4 x 120	480	आरओआर
5	धौलीगंगा	अक्टूबर-नवम्बर 2005	पिथौरागढ़ (उत्तराखंड)	धौलीगंगा	4 x 70	280	पॉन्डेज सहित आरओआर
6	तीस्ता-V	मार्च-अप्रैल 2008	पूर्वी सिक्किम				
			(सिक्किम)	तीस्ता	3 x 170	510	पॉन्डेज सहित आरओआर
7	चमेरा-III	जून-जुलाई 2012	चंबा (एचपी)	रावी	3 x 77	231	पॉन्डेज सहित आरओआर
8	चुटक	नवम्वर 2012 से फरवरी 2013	कारगिल (जे एवं के)	सुरू	4 X 11	44	आरओआर
9	नथपा-झाकरी	अक्टूबर 2003 से मई 2004	किन्नौर तथा शिमला (एचपी)	सतलुज	6 X 250	1500	पॉन्डेज सहित आरओआर
10	टिहरी-हाइड्रो	सितम्बर 2006 से जुलाई 2007	टिहरी (उत्तराखंड)	भागीरथी और भीलांगना	4 x 250	1000	भंडारण सहित बहु- उद्देश्य विद्युत परियोजना
11	इंदिरा सागर	जनवरी 2004 से मार्च 2005	खंडवा (एमपी)	नर्मदा	8 X 125	1000	भंडारण सहित बहु- उद्देश्य विद्युत परियोजना

अनुबंध 4.1 (पैरा 4.2 देखें)

पावर स्टेशनों द्वारा किए गए योजनागत/बृहत रख-रखाव में अपर्याप्तताए

लेखापरीक्षा अभ्युक्ति	मंत्रालय/प्रबंधन का उत्तर	लेखापरीक्षा की अनुवर्ती टिप्पणियां
एनएचपीसी के धौलीगंगा पावर स्टेशन के प्रेशर शैफ्ट से अत्याधिक स्त्राव के उपचार में विलंब अगस्त 2005 में धौलीगंगा पावर स्टेशन (डीजीपीएस) के प्रेशर शैफट'-I की आरंभिक चार्जिंग के दौरान भारी पानी स्त्राव देखा गया था। यद्यपि यह खराबी की देयता अविध में थे फिर भी डीजीपीएस ने खराबी के परिशोधन हेतु ठेकेदार को कहने के बजाय अन्य ठेकेदार को प्रेशर शैफट को ठीक करने का कार्य दे दिया (मार्च 2006), जिसने भारी पानी स्त्रावों को देखने के बाद कार्य छोड़ दिया (अप्रैल 2006)। इसके बाद तीन निरीक्षण किये गये अर्थात (i) एचएचपीसी के डिजाईन डिवीजन द्वारा (फरवरी 2007), जिन्होंने शैफ्ट में संरचनात्मक गड़बड़ी देखी थी (ii) कार्पोरेट कार्यालय की समिति द्वारा (मई 2008) जिन्होंने प्रैशर शैफट टॉप के एडिट में अत्यधिक रिसाव और पानी के रंग में परिवर्तन देखा जोकि शीघ उपचारी उपायों हेतु चेतावनी सूचक था (iii) इस समस्या हेतु उचित उपचारी उपाय सुझाने हेतु गठन की गई अन्य समिति (जुलाई 2011)। तथापि, उपरोक्त तीन निरीक्षणों की जांच और सिफारिशों के बावजूद प्रबंधन द्वारा कोई उपचारी कार्रवाई नहीं की गई थी। तथापि उपरोक्त तीन निरीक्षणों की जांच और सिफारिशों के बावजूद प्रबंधन द्वारा कोई उपचारी कार्रवाई नहीं की गई थी। कार्य को केवल जून 2013 की बाढ़ के बाद है 18.30 लाख की लागत पर डीजीपीएस के पुनरुद्धार के बाद किया गया था। इस प्रकार, एक समस्या, जोकि अगस्त 2005 में पावर स्टेशन के प्रवर्तन के तुरंत बाद उत्पन्न हुई थी और जिसका महत्वपूर्ण संरचना की सुरक्षा पर प्रत्यक्ष प्रभाव था, का आठ वर्षों तक समाधान नहीं किया गया था, यद्यपि योजनागत रख-रखाव प्रत्येक वर्ष यूनिट द्वारा किया गया था। लीकेज के परिणामस्वरूप 2006-07 से 2012-13 तक ₹ 94.80 लाख के मूल्य के 11.85 एमयूज	एनएचपीसी ने बताया (फरवरी 2015) कि पावर स्टेशन द्वारा जल संवाहक प्रणाली के डीवाट रिग/पावर स्टेशन को पूर्ण रूप से बंद किए बिना मरम्मत करने के लिए बार-बार प्रयास किए गए थे। यह भी बताया गया (अगस्त 2015) कि पावर स्टेशन को पूर्णत बंद करना वाणिज्यिक रूप से विवेकपूर्ण नहीं था।	उत्तर स्वीकार्य नहीं है क्योंकि : (i) प्रबंधन के अनिश्चय के कारण इसमें आठ वर्ष लगे। (ii) एनएचपीसी ने त्रुटि देयता अवधि के दौरान ठेकेदार से स्त्राव परिशोधन न कराने पर कोई टिप्पणी नहीं दी थी। (iii) धौलीगंगा पावर स्टेशन को प्रैशर शैफट स्टील लाइनर 1 और 2 की भीतरी सतह के पेंटिंग कार्य को पूरा किए बिना शुरू किया गया था और प्रैशर शैफट से स्त्राव आरंभिक चार्जिंग के दौरान ही देखा गया था।
की सीमा तक उत्पादन हानि (मंदी के मौसम में) हुई। एनएचपीसी के धौलीगंगा पावर स्टेशन में अतिरिक्त पुर्जां की विलंबित/गैर-प्राप्ति यूनिट संख्या 3, 4 और 1 के रनर को क्रमशः 2009-10, 2010-11 और 2011-12 में वार्षिक रखरखाव के दौरान बदलने की योजना थी। तथापि, उपरोक्त यूनिटों के वार्षिक रखरखाव से पूर्व नये/मरम्मत किये गये रनर की गैर-प्राप्ति के कारण, इन यूनिटों को रनर बदले बिना प्रचालन में लगा दिया गया था। रनर की प्राप्ति के बाद, इन यूनिटों को तीन दिनों से पांच दिनों के लिये फिर से उत्पादन से बाहर करना पड़ा था, जिसके परिणामस्वरूप कम पीएफ के चलते ₹1.32 करोड़ की हानि हुई।	एनएचपीसी ने कहा (फरवरी/अगस्त 2015) कि यूनिट के बंद होने के समय और अतिरिक्त पुर्जों की उपलब्धता का किसी भी उत्पादन हानि से बचने के लिये मिलान और अनुकूलन किया जाएगा। इसकी ओ और एम मण्डल, कॉरपोरेट कार्यालय द्वारा निगरानी भी की जाएगी।	आश्वासन की सराहना करता है तथा इस पर भविष्य में

¹ उच्च दबाव झेलने हेतु डिजाईन किया गया सीधा या झुका हुआ शैफ्ट प्रेशर शैफ्ट सर्ज शैफ्ट तथा मुख्य इनलेट वाल्व (एमआई के बीच स्थित बंद मार्ग हैं जो दबावयुक्त पानी का गमन नियंत्रित करते है। सर्ज शैफट हेड रेस सुरंग के अंत में अवस्थित है। यह पावर हाऊस में ट्रिपिंग और मशीन को शुरू करने के मामले में अपकिमंग और लॉअरिंग सर्ज को अवशोषित करने के लिए उचित ऊंचाई और चौड़ाई वाली कुएं के प्रकार की संरचना है।

² एडिट भूमिगत सुरंगों में प्रवेश मार्ग का प्रकार है जोकि क्षेतिज या लगभग क्षेतिज हो सकता है।

³[{(70/26.8) x 0.15} x 24 घंटे x 30 दिन x 6] x 7

अतिरिक्त पुर्जो की प्राप्ति और रखरखाव समय, का समन्वयन न होने के कारण, धौलीगंगा पावर स्टेशन को कम पीएएफ के कारण ₹1.32 करोड़ की हानि हुई।

एनएचपीसी के धौलीगंगा पावर स्टेशन में मेन इनलेट वाल्व (एमआईवी) सील का रखरखाव न होना

2011-12 के वार्षिक रखरखाव के दौरान, डीजीपीएस के रखरखाव दल ने पाया कि डीजीपीएस की यूनिट संख्या 3 और 4 की एमआईवी सील के माध्यम से लीकेज खतरनाक चरण पर थी, लेकिन उसकी मरम्मत नहीं की गई क्योंकि इसके लिये प्रेशर शाफ्ट-II की मरम्मत भी अपेक्षित थी। योजनाबद्ध रखरखाव अविध के दौरान एमआईवी की मरम्मत न होने के कारण, डीजीपीएस को 28 अगस्त 2012 से 04 सितम्बर 2012 के दौरान यूनिट संख्या 3 के संबंध में 164:48 घंटो के जबरन कटौती का सामना करना पड़ा, जो कि ₹ 92.32 लाख (11.54 एमयू x ₹ 0.80 प्रति यूनिट) के मूल्य वाले 11.54 एमयू की उत्पादन हानि बैठती है। लेखापरीक्षा ने यह भी देखा कि इस अविध के दौरान मशीन की अनुपलब्धता के कारण, पावर स्टेशन, पावर का वांछित स्तर निर्धारित करने में असक्षम था और कम पीएएफ के कारण भी ₹55.61 लाख⁴ की हानि हुई।

एनएचपीसी ने कहा (अगस्त 2015) कि एमआईवी में लीकेज के बावजूद भी, उसका रखरखाव 2011-12 में वार्षिक रखरखाव के दौरान नहीं किया गया, क्योंकि यह लंबी अवधि के लिये प्रेशर शाफ्ट को खाली करके ही किया जा सकता था। तथापि, कटौतियां जैसी बताई गई हैं एमआईवी सील की लीकेज के कारण नहीं थी।

उत्तर को इस तथ्य के प्रति देखा जाना चाहिये कि दैनिक उत्पादन रिपोर्ट दर्शाती है कि डीजीपीएस की जबरन कटौती एमआईबी न खुलने के कारण थी। इसके अतिरिक्त, जैसा कि प्रबधंन 2011-12 में वार्षिक रखरखाव के समय एमआईवी में लीकेज के बारे में पता था, वार्षिक रखरखाव के दौरान एमआईवी की समस्या को सुधारना उचित होता, जो मंदी की अवधि के दौरान किया गया था। इससे चरम मांग अवधि के दौरान जबरन कटौती और परिणामतः वित्तीय हानि से बचा जा सकता था।

एनएचपीसी के टनकपुर पावर स्टेशन (टीपीएस) में अनुचित वार्षिक रखरखाव

2013-14 के वार्षिक रखरखाव में प्रबंधन द्वारा रनर के निरीक्षण के दौरन, यूनिट 3 के रनर ब्लेड पर दरार देखी गई। रनर बीएचईएल की भोपाल यूनिट को भेजा गया और यूनिट इस यूनिट के पुराने मरम्मत किये गये रनर को लगाकर 02 जून 2014 से पुनः प्रचालन में लगा दी गई। तथापि, सिंक्रानाइजेशन के तुरंत बाद, यूनिट 3 में अधिक शॉफट कंपन की समस्या उत्पन्न हुई। जांच के बाद, टीपीएस ने निष्कर्ष निकाला कि बढ़ा हुआ कंपन गलत एलाईन्मेट/असंतुलन के कारण हो सकता है। चूँकि गलत एलाईन्मेट/असंतुलन में सुधार कार्य में अधिक समय लगता है, टीपीएस ने मशीन को 20-25 मे.वा (31.4 मे.व के प्रति) आउटपुट के बीच चलाने का निर्णय लिया, तािक कंपन सुरक्षित सीमा तक हो और विस्तृत विश्लेषण और सुधारात्मक कार्यवाही मंदी के मौसम के दौरान किया जाए।

तथापि, मशीन 26 अगस्त 2014 को ठीक की गई थी। कम क्षमता पर यूनिट संख्या 3 के प्रचालन के कारण, टीपीएस को 02 जून-25 अगस्त 2014 की चरम मांग अवधि के दौरान 1.01 करोड़ (प्रति यूनिट ₹0.80 की दर पर, अतिरिक्त ऊर्जा के लिये दर) के मूल्य की 12.58 एमयू की हानि हुई। टीपीएस ने कहा (दिसम्बर 2014/जून 2015) कि यदि मशीन मरम्मत के लिये ले जाई जाती, तो मरम्मत में लगभग 15-20 दिन लगते। तदनुसार, मशीन को चरम अवधि में उत्पादन हानि से बचने के लिये 20-25 मे.व पर चलाना जारी रखा। टर्वाइन गाइड बियरिंग (टीजीबी) की गैप सेटिंग की जांच की गई और 9:19 घंटो की कटौती करने के बाद 26 अगस्त 2014 को समायोजित की गई। इस प्रकार, कंपन स्तर कम किया गया और मशीन का पूर्ण क्षमता से प्रचालन हुआ। मशीन को री ऐलाईन करने की प्रक्रिया 15-20 दिन की अवधि वाले अगले वार्षिक रखरखाव के दौरान करने की योजना बनाई गई।

एनएचपीसी ने कहा (अगस्त 2015) कि पावर स्टेशन को भविष्य में बिना किसी विलम्ब के इस प्रकार के सुधारात्मक उपाय करने के लिये आगाह किया गया है।

मंत्रालय ने कोई टिप्पणी प्रस्तुत नहीं की है (अगस्त 2015)। चूँकि कंपन स्तर में सुधार करीब 9 घंटों का समय लेता, अतः स्पष्ट नहीं था कि इसे 02 जून 2014 को ही क्यों नहीं किया गया जब अधिक शाफ्ट कंपन देखा गया था। 02 जून 2014 के बीच (अर्थात मरम्मत की तिथि तक) कम भार पर यूनिट संख्या 3 चलाने के कारण 12.58 एमयूज की हानि हुई।

⁴[{₹27064.43 लाख (एएफसी)/2}/365]/4 x 6 (29 अगस्त 2012 से 03 सितम्बर 2012 तक)

अनुबंध 4.2 (पैरा 4.2.1.1देखें)

एनएचपीसी के घौलीगंगा पावर स्टेशन में प्रस्ताव प्रारंभ करने और कार्य देने में विलम्ब के कारण अधिप्राप्ति में हुआ विलम्ब दर्शाने वाला विवरण

क्र. सं.	ठेके का नाम	बजट प्रावधान (1)	प्रस्ताव की तिथि (2)	कार्य देने की तिथि (3)	कार्य देने तथा पीआर की तिथि के बीच अवधि महीनों में (4=3-2)	दिए गए कार्य का मूल्य (₹ लाख में) (5)	आपूर्ति की निश्चित तिथि (6)	आपूर्ति की वास्तविक तिथि (7)	आपूर्ति में विलम्ब (8=7=6)
1	रनर कोन	2009-10	19.3.10	17.12.11	21	20.93	16.11.12	20.12.12	1
2	अपर और लोवर बुश हाऊसिंग एसेम्बली का पूरा सेट (प्रत्येक संख्या 20)	2010-11	29.10.10	25.3.11	5	12.04	20.9.11	9.8.12	10.5
3	वीयरिंग प्लेटों से बने हुए टाप कवर और बाटम रिंग	2010-11	28.6.10	7.2.11	7.5	21.97	9.8.11	2.1.12	5
4	स्थायी और चलित लेबिरिंग	2011-12	11.8.11	27.1.12	5.5	70.98	24.7.12	21.8.12	1
5	वीयरिंग प्लेटों से बने हुए टाप कवर और बारम रिंग	2011-12	9.8.11	21.01.12	5.5	33.75	20.7.12	16.03.12 और 21.08.12	-
6	जीआईएस सीबी सक्रिय भाग एवं उसके स्पेयर	2011-12	19.5.11	12.07.12	14	37.82	24.5.13	30.5.13	-
7	पावर हाऊस गाइडवेन के लिए	2012-13	14.09.11	29.04.13	19.5	56.94	28.02.14	06.10.13	-

अनुबंध 4.3 (पेरा 4.2.1.2 देखें)

एनएचपीसी के टनकपुर पावर स्टेशन में प्रस्ताव प्रारंभ करने और कार्य देने में विलम्ब के कारण अधिप्राप्ति में हुआ विलम्ब दर्शाने वाला विवरण

क्र. सं.	ठेके का नाम	वजट प्रावधान	प्रस्ताव की तिथि	कार्य देने की तिथि	प्रस्ताव की तिथि से कार्य देने के तिथि कार्य की अवधि (महीने में)	दिए गए कार्य का मूल्य (₹ लाख में)
1	टनकपुर विद्युत स्टेशन के लिए 49.5 एमवीए जेनरेटर ट्रांसफारमर के लिए एयरसेल प्रकार कन्सरवेटर	2012-13	13.1.12	10.1.13	12	12.65
2	सीपीसीबी प्रतिमानों के अनुरूप एसेसरीज और एएमएफ पैनल के साथ 02 सं 625 केवीए साइलेंट डीजीसेट की आपूर्ति, संस्थापना, जांच एंव कार्यारंभ	2011-12	22.12.09/ 10.2.12	16.6.12	30/4	99.08
3	डिजिटल आटोमेटिक वोल्टेज रेगुलेटर	2008-09	14.11.07	25.5.10	30	60.03
4	डिजिटल गवर्नर, मेक्स डीएनए वर्जन	2011-12	3.6.11	27.7.12	13.5	157.65
5	01 सं. 55 टन क्षमता (रफ टेरेन) मोबाइल क्रेन	2012-13	27.6.12	29.1.14	19	237.00
6	सीपीसीबी प्रतिमानों के अनुरूप एसेसरीज और एएमएफ पैनल के साथ 02 625 केवीए साइलेंट डीजीसेट की आपूर्ति संस्थापना, जांच एंव कार्यारंभ	2012-13	27.10.12	31.3.14	17	54.39
7	31.4 एमडब्ल्यू जेनरेटर के लिए सटेटर एयरकूलर एवं बियरिंग आयल कूलर्स	2011-12	20.6.11	13.1.12	6.5	49.77
8	रनर ब्लेड को मापने के लिए रनर ब्लेडों टेपलेट की खरीद	2012-13	02.02.12	07.08.12	6	8.48

अनुलग्नक 4.4

(जैसा पैरा 4.3.2 में संदर्भित है)

लगातार जबरन कटौती करने और खराबियों के विलंबित समाधान के मामले

लेखापरीक्षा निष्कर्ष	प्रबंधन का उत्तर	लेखापरीक्षा की अतिरिक्त टिप्पणियां
गैस इंसुलेटेड स्विच गियर सर्किट ब्रेकर में खराबी के कारण कटौती		
21 जून 2006 को धौलीगंगा पावर स्टेशन की यूनिट संख्या 4 का गैस इंसुलेटेड स्विच गियर (जीआईएस) सर्किट बेकर (सीबी) विद्युत का प्रवाह रोकने में विफल रहा। चूँकि कोई भी स्पेयर सीबी उपलब्ध नहीं थी, खराब सीबी को बस कपलर्श के अच्छे सीबी पोल से बदल दिया गया था और यूनिट संख्या 4 से उत्पादन 06 जुलाई 2006 से शुरू कर दिया गया था। खराब सीबी पोल मैसर्स एल्सटॉम (निर्माता) को भेज दिया गया था, जिसने सूचित किया (अक्टूबर 2006) कि खराबी के लिये स्पष्टत चिन्हित कारण के अभाव में, अन्य जांच की जानी अपेक्षित हैं। इसके बाद, दिसम्बर 2012 तक (अर्थात 20 मार्च 2008, 07 मार्च 2011, 15 फरवरी 2012, 30 अक्टूबर 2012, 07 दिसम्बर 2012 और 10 दिसम्बर 2012) यूनिट संख्या 1, 2 और 3 की सीबी में छह बार और खराबियां आ गई, जिसके कारण डीजीपीएस को 2527 मशीन घंटो की जबरन कटौती का सामना करना पड़ा। अंत में, अक्टूबर 2012 में आगे की कार्यवाही के बाद एनएचपीसी और मैसर्स एल्सटॉम के बीच पुनरावृत्ति का कारण और उससे बचने के लिये अपेक्षित सुधारात्मक उपायों पर चर्चा करने के लिये बैठक की गई (अप्रैल 2013)। बैठक में मैसर्स एल्सटॉम ने सूचित किया कि विस्तृत अध्ययन के परिणामस्वरूप, कठिनाई मुक्त प्रचालन के लिये सीबी के संयोजन में कुछ संशोधन किये गये है। प्रारूप की समस्या को स्वीकार करते हुये, मैसर्स एल्सटॉम ने जनवरी-फरवरी 2014 में चारों उत्पादन यूनिटों, बस कपलर और दोनों संचरण लाइनों (कुल 21 पोल) के सीबी के सारे सक्रिय माग को बदला। लेखापरीक्षा ने देखा कि इस तथ्य के बावजूद कि सीबी इतने रखरखाव मुक्त और बहुत ही विश्वसनीय उपकरण है, कि ओईएम के रखरखाव मैनुअल ने केवल मामूली निरीक्षण वह भी चार वर्ष से छह वर्षों के पश्चात, की सिफारिश की। डीजीपीएस ने अक्टूबर 2006 से अक्तूबर 2012 तक मैं. एलस्टोम के साथ सीबी की विफलता पर आगे कार्यवाही नहीं की जिसके कारण डीजीपीएस ने 25 27:43 मशीन घण्टे खो दिये जो 105.91 एमयूज की उत्पादन हानि के बराबर बैठता हैं।	एनएचपीसी ने कहा (नवम्बर 2014, फरवरी 2015 और अगस्त 2015) कि (i) चूँकि अनुवर्ती वर्ष में 2006 के बाद पुनः कोई खराबी नहीं हुई, यह भविष्य में भी अपेक्षित नहीं था। इसके अतिरिक्त, प्रारूप में परिवर्तन सिर्फ एक खराबी के आधार पर नहीं था। फर्म ने 2012 में चार एक जैसी खराबियों को देखने के बाद प्रारूप में परिवर्तन की आवश्यकता महसूस की और प्रबंधन के कहने पर, उन्होंने प्रारूप में गलती को स्वीकार किया, (ii) सीबीज़ का मामूली/मुख्य निरीक्षण केवल उपकरण के प्रचालन की अवधि पर नहीं बल्कि उसके एक दिन में किये गये प्रचालन की संख्या या मशीन या फीडर की कट ती के कारण हुई ट्रिपिंग की संख्या के आधार पर भी था जो सक्रिय भाग में चल और अचल संपर्क पर हानिकारक प्रभाव डालता है।	उपकरण की विश्वसनीयता और रखरखाव मुक्त प्रकृति को और वाणिज्यिक प्रचालन शुरू के एक वर्ष के अंदर पहली खराबी और उसके बाद दूसरी खराबी 2008 में आने को ध्यान में रखते हुये, डीजीपीएस के लिये मैसर्स एल्सटॉम की कार्यशाला को भेजे गये खराब सीबी पर अनुवर्ती जांच के परिणाम पर शीघ्र कार्यवाही करना वांछित था। इसके अतिरिक्त मैसर्स एल्सटॉम द्वारा प्रारूप में गलती को स्वीकार करने के संबंध में उत्तर यह तथ्य स्पष्ट करता है कि प्रचालन के शुरूआती स्तर पर रखरखाव मुक्त और मजबूत भाग में खराबी आना असामान्य था। (ii) डीजीपीएस ने अपने उत्तर के समर्थन में सीबी द्वारा किये गये प्रचालन की वास्तविक संख्या प्रस्तुत नहीं की।

⁶व्यस्ततम अविध के दौरान हुए पहले दो आऊटेज के संबंधमें 95.76 एमयूज + मंदी की अविध में हुए अन्य पाँच आऊटेज के संबंध में 10.15 एमयूज

डीजीपीएस में गाईड वैन्स (विकेट गेट) के न खुलने के कारण कटौतियाँ

डीजीपीएस ने अक्तूबर 2005 में इसके सीओडी से पहला मानसून पुरा होने के पश्चात विकेट गेट⁷ के स्वचलित खुलने में समस्या का सामना करना प्रारंभ किया। चूंकि समस्या तीन वर्षों तक जारी रही, इसलिए महाप्रबन्धक/ डीजीपीएस ने परीक्षण आधार पर एक इकाई में वर्तमान सर्वीमोटर को उच्चतर क्षमता की सर्वीमोटर से बदलने का सुझाव दिया (अक्तूबर 2009)। तथापि, इस संदर्भ में आगे कोई कार्यवाही नहीं की गई थी। इसी बीच, अक्तुबर 2009 में मैसर्स एलस्टोम का एक विशेषज्ञ बुलाया गया जिसने विकेट गेटों के ग्रीजिंग प्रणाली के अनुकुलन की सलाह दी। अनुकूलन के वावजूद, विकेट गेटों के न खुलने की समस्या 2010 के दौरान जारी थी। महाप्रबन्धक/ डीजीपीएस ने अपनी चिन्ता निगमित कार्यालय के ओ एवं एम डिवीजन के समक्ष दोहराई (अगस्त 2011) तथा सर्वोमोटर की क्षमता में वध्दि करने के प्रस्ताव का अनुमोदन करने के लिए अनुरोध किया। चूंकि जीएम/ डीजीपीएस के प्रस्ताव पर एनएचपीसी के ओ एवं एम डिवीजन द्वारा कोई निर्णय नहीं लिया गया था, इसलिए वर्ष 2011 के मानसून के दौरान भी डीजीपीएस विकेट गेटों के न खलने की समस्या का सामना करता रहा। ओ एंव एम डिवीजन, नियमित कार्यालय ने सर्वोमोटर स्टोक (एमएम) के सदंर्भ में विकेट गेट कोण (डिग्री) संचलन की सिनेमैटिक (ड्राई जॉच) करने के लिए और विकेट गेटों की सिल्टेशन (ड्राई जॉच) के कारण होने वाले नुक्सान को रोकने के लिए अन्तर्जलीय भागों की कोटिंग का सुझाव दिया (अक्तूबर 2011)। इन उपायों पर डीजीपीएस द्वारा कार्यवाही नहीं की गई थी तथा इसी बीच, 16-17 जुन 2013 की अर्धरात्री को घटित भारी बाढ़ के कारण, पावर हाऊस में उत्पादन बन्द हो गया था। पावर स्टेशन की मरम्मत के दौरान, मैसर्स एलस्टोम की सिफारिश के आधार पर, एनएचपीसी ने ₹ 52.92 लाख की लागत पर विकेट गेट सर्वीमोटर के चार सेट खरीदे (नवम्बर 2013) तथा प्रतिष्ठापित किये। मरम्मत के पश्चात (अर्थात मई 2014 से अगस्त 2014) आउटेज रिर्पोट में विकेट गेट न खुलने की समस्या का संकेत नहीं दिया गया है।

लेखापरीक्षा ने देखा कि डीजीपीएस के बारम्बार अनुरोध के बावजूद सर्वोमोटरों के प्रतिस्थापन पर विलम्बित निर्णय के परिणामस्वरूप 31 मार्च 2013 को समाप्त होने वाले पाँच वर्षों के दौरान विकेट गेट न खुलने के कारण 14.56 एमयूज (₹1.16 करोड़ के बराबर) की हानि के साथ कुल 208:02 के मशीन घण्टों की बारम्बार कटौती हुई। इसके अतिरिक्त, उन तिथियों पर सहमत उत्पादन कार्यक्रम के अनुसार उत्पादन न होने के कारण डीजीपीएस को अनियत विनिमय° प्रभारों के रूप में ₹1.78 करोड़ की शास्ति वहन करनी पड़ी थी।

एनएचपीसी ने बताया (नवम्बर 2014 से तथा अगस्त 2015) कि मै. एलस्टोम ने प्रारम्भ में सुचित किया कि सर्वोमोटर अन्डर-डिजाईन नहीं थी तथा गाईड वैन्स सिल्ट द्वारा अन्तर्जलिय भागों को नुक्सान के कारण नहीं खुल रही थी। 2012-13 की वार्षिक मरम्मत के दौरान, मै. एलस्टोम ने समस्या का अध्ययन किया तथा निष्कर्ष निकाला कि सर्वोमोटर को बदलने के अलावा और कोई विकल्प नही था। विस्तत अध्ययन के बिना सर्वोमोटर का कार्यान्वयन/प्रतिस्थापन वॉछनीय नहीं था। सर्वोमोटर 2014 में बदली गई थी तथा अब गाईड संचालन विघ्न मक्त था।

विकेट गेटों के सभी अन्य पैरामीटरों के संतोषजनक संचालन के मद्देनजर, डीजीपीएस ने स्वयं ही अक्तूबर 2009 में सर्वोमोटरों के प्रतिस्थापन आवश्यकता का निष्किण निकाला था। तथापि, सुधारात्मक कार्यवाही समय पर नहीं की गई थी।सर्वोमोटरों के प्रतिस्थापन द्वारा समस्या का अन्तिम निदान भी इस तथ्य की पुष्टि करता है कि समस्या स्वयं सर्वोमोटर में ही थी।

⁷ धौलीगंगा पावर स्टेशन (डीजीपीएस) में भार अन्तर के अनुसार जल के प्रवाह को विनियमित करने के लिए एक इकाई में 20 विकेट गेट हैं। विकेट गेट दो सर्वोमोटरों के द्वारा संचालित किये जाते हैं।

[ै] एक उत्पादक स्टेशन के लिए एक समय खण्ड में अनियत विनिमय का अर्थ है इसका कुल वास्तविक उत्पादन घटा इसका कुल नियत उत्पादन। सभी समय खण्डों के लिए अनियत विनियम हेतू प्रभार उत्पादक स्टेशन द्वारा अन्डर-इंजेक्शन हेतू भुगतान योग्य होगा, जो समय खण्ड की औसत आवृत्ति हेतू सीईआरसी द्वारा निर्धारित की गई दरों के आधार पर निकाला जाएगा।

टनकपुर पावर स्टेशन में रोटर अर्थ फाल्ट के कारण कटौती

अगस्त 2009 एवं सितम्बर 2014 के बीच, टीपीएस ने इकाई सं. 1 के बार बार होने वाले रोटर अर्थ फाल्ट के कारण 537:38 घण्टे का बलात आऊटेज वहन किया। रोटर अर्थ फाल्ट की समस्या के अगस्त 2009 से जारी रहने के बावजूद, टीपीएस ने जनवरी 2014 में पहली बार भेल (अर्थात ओईएम) को ऐसे बार बार होने वाली खराबियों का सटीक कारण पता करने के लिए संपूर्ण रोटर की विस्तृत जॉच/निरीक्षण तथा परीक्षण करने को कहा। भेल ने सितम्बर 2014 में जोड सलंब हेतू साउण्ड पोलों के पुनर्विसंवाहन, कॉयल लीड तथा इन्सूलेटिड क्लैम्प इत्यादि को बदलने की सिफारिश की। यह कार्य अभी किया जाना बाकि है (फरवरी 2015)।

इस प्रकार, रोटर अर्थ फाल्ट के कारण इकाई सं. 1 में बार बार होने वाली समस्या का स्थाई समाधान नही खोजा जा सका यद्यपि 2009 से 2014 के दौरान पाँच वार्षिक मरम्मतें की गईं थीं। इसके परिणामस्वरूप टीपीएस ने ₹1.35 करोड मूल्य की 16.87 एमयुज की उत्पादन हानि वहन की। एनएचपीसी ने बताया (फरवरी 2015 एवं अगस्त 2015) कि पहली बार रोटर अर्थ फाल्ट उत्पादक इकाई सं.। की पूँजीगत मरम्मत के पश्चात 21 अगस्त 2009 को विकसित हुआ था। उसके पश्चात रोटर अर्थ फाल्ट 2010-11 तथा 2011-12 के दौरान हुआ था। समस्या पर पहले से ही ओईएम के साथ टेलीफोन पर चर्चा की जा चुकी हे तथा उनकी सितम्बर 2014 की सिफारिश टीपीएस में चरणबद्ध ढंग से कार्यान्वित की जाएगी तथा ओ एवं एम डिवीजन द्वारा उचित रूप से निगरानी की जाएगी।

उत्तर दर्शाता है कि एनएचपीसी पिछले पाँच वर्षों के दौरान बार बार होने वाली रोटर अर्थ फाल्ट समस्या का स्थाई समाधान उपलब्ध कराने में विफल हुआ था।

एनएचपीसी के टीस्ता-V पावर स्टेशन में रेडिअल गेटों की मरम्मत में विलम्ब के कारण उत्पादन हानि

टीस्ता-V पावर स्टेशन के बॉध के रेडिअल गेटों से जल का स्नाव मार्च 2009 में देखा गया था जिसके कारण विद्युत के उत्पादन की हानि हुई। 2010 की वार्षिक मरम्मत के दौरान जल स्राव को रोकने के लिए अस्थाई मरम्मत कार्य किया गया था, परन्तु समस्या को पूरी तरह से नही सुधारा जा सका। प्रबन्धन ने अविलम्ब आधार पर अक्तुबर 2012 में रेडिअल गेटों की बडी मरम्मत हेतू कार्यवाही प्रारंभ की। तथापि, रेडिअल गेटों के मुख्य मरम्मत कार्य हेतू अनुमोदन आठ महीने बाद जून 2013 मे प्रदान किया गया था। कार्य ₹8.04 करोड के मूल्य पर मै. मून्गीपा ट्रेड लिक्स प्राईवेट लिमिटेड को दिया गया था (दिसम्बर 2013) तथा मार्च 2014 में पूरा हुआ था। लेखापरीक्षा ने देखा कि अत्यावश्यक मरम्मत कार्य के प्रशासनिक अनुमोदन में आठ महीने (अक्तूबर 2012 से जून 2013) के विलम्ब के कारण, कार्य जो जुलाई 2013 में पूरा होना संभव था, वास्तव में मार्च 2014 में पुरा हुआ था जिसके परिणामस्वरूप सितम्बर 2013 से फरवरी 2014 की मंदी की अवधि के दौरान ₹40.59 करोड मूल्य की 301.32 एमयूज की उत्पादन हानि हई।

एनएचपी ने बताया (अप्रैल 2015) की स्टॉप लॉग सिल बीमों का मरम्मत/प्रतिस्थापन कार्य मशीन के पूर्णतः बन्द होने पर ही सम्भव था। इसके अतिरिक्त, स्टॉप लाग सिल बीमों का मरम्मत और अनुरक्षण कार्य चरणबद्ध रूप में प्रगति में था।

प्रशासनिक अनुमोदन में परिहार्य विलम्ब जिसके परिणामस्वरूप उत्पादन हानि हुई के लिए कारणों के बारे में उत्तर मौन है।

अनुबंध **6.1** (पेरा 6.6.2(ii) देखें)

बांध सुरक्षा दल की आपत्तियां दर्शाने वाला विवरण जिसका उक्त दल द्वारा अनुसंशित समय सीमा के अन्दर टनकपुर पावर स्टेशन द्वारा अनुपालन नही किया गया।

निरीक्षण अवधि	आपत्ति	टीपीएस द्वारा की गई कार्रवाई	लेखापरीक्षा टिप्पणी
7 एवं 8 मई 2012	लेफ्ट एफलक्स बंड पिछले निरीक्षण के दौरान आरडी 280-400 मी के बीच कंक्रीट लाइनिंग और नीचे केविटीज में क्रेंक पाए गए। क्रेंकों से संबंधित आगे धसने की क्रिया है। अपस्ट्रीम साइड के 50 मी स्ट्रेच में भी वर्तमान जांच के दौरान टेट्रापोड लगा कर अस्थायी सुरक्षा कार्य किए जा रहे हैं और केविटीज को छोड दिया गया है। यह सुझाव दिया जाता है कि टेट्रापोड लगाने के बाद केविटीज को बोल्डर्स/उपलब्ध आरबीएम ग्रेनाइट ब्लाक या सैंड बैग से भी भरा जाए तािक वह स्थल की स्थिति के अनुरूप हो जाए जिससे मानसून की बाढ के दौरान किनारे को अचानक गिरने से बचाया जा सके। चूंकि यह क्षेत्र क्षति संबंधी गंभीर कटाव के प्रति संवेदनशील है इसलिए मानसून 2012 के प्रारंभ होने से पहले यह कार्य प्राथमिकता पर पूरा किया जाना चािहए।	11.01.2014 से 26.03.2014 के बीच पावर स्टेशन के बंद होने की अवधि के दौरान आरडी 280 मी से 400 मी के बीच क्षतिग्रस्त क्षेत्र का स्थायी मरम्मत कार्य किया गया था।	वह क्षेत्र जिसे बांध सुरक्षा दल द्वारा गम्भीर कटाव संबंधी क्षतियों के लिए संवेदनशील माना गया था (मई 2012) और इसलिए मानसून 2012 के प्रारंभ से पूर्व प्राथमिकता पर पूरा किया जाना था को मानसून 2013 के प्रारंभ होने से भी पूर्व तक भी नहीं किया गया था।
	15 एवं 16 अक्तूबर 2012 को किया गया निरीक्षण पिछले निरीक्षण के दौरान कंक्रीट लाइनिंग में पायी गई क्षतियाँ मानसून के दौरान और आगे विस्तारण से बचने के लिए 240 से 340 मी के बीच अस्थायी रूप से उपचारित की गई थीं और आरडी 186 मी से 240 मी के बीच के शेष भाग को पिछले निरीक्षण में दिए गए सुझावों के अनुसार जल्द ही किया जाएगा। 01 एवं 02 अप्रैल 2013 को किया गया निरीक्षण समान स्थिति जो 15 एवं 16.10.2012 के निरीक्षण		
15 एवं 16 अक्तूबर 2012	के दौरान रिपोर्ट की गई । राइट एफ्फलक्स बन्ड यह अवलोकन किया गया कि मुख्य नदी की एक शाखा शारदा घाट के पास दायें किनारे की ओर मुड़ रही थी; अतः यह परामर्श दिया गया था कि शारदा घाट से जल को मोड़ने के लिए निर्मित स्पुर की क्षतिग्रस्त नोज को बहाल किया जाना है। 01 एवं 02 अप्रैल 2013 को किया गया निरीक्षण यह सूचित किया गया कि पावर स्टेशनो ने यह बताया था कि शारदा घाट के पास लो लेवल स्पुर की नोज की बहाली को जल्दी ही किया जाएगा।	शारदा घाट बाजार के समीप लो लेवल स्पुर की नोज का दिनांक 31 मार्च 2014 को पत्र द्वारा मै. हीलमैन एन्टरप्राइजिज, मीना बाजार को कार्य देकर पुनः स्थापन किया गया था।	अक्तूबर 2012 में परामर्शित पुनः स्थापन कार्य को मानसून 2013 की शुरूआत से पहले पूरा नहीं किया गया।

निरीक्षण अवधि	आपत्ति	टीपीएस द्वारा की गई कार्रवाई	लेखापरीक्षा टिप्पणी
01 एवं 02 अप्रैल 2013	नदी किनारे का सुरक्षा कार्य पिछले दौरे (अक्तूबर 2012) के दौरान सूचित नौ स्थानो (पावर चैनल के समानांतर) आरडी 2150, 2400, 2575, 2650, 4250, 4350, 4550, 4650 तथा 4880 पर स्पुर की नोज तथा अन्य भागो की क्षति को विशेष रूप से एमईएस क्षेत्र में मानसून की शुरूआत से पूर्व प्राथमिकता के आधार पर किया जाना है।	उक्त के अनुपालन में, कार्य को दिनांक 20.1.2014 की एलओए संख्या 3115 के द्वारा मानसून की शुरूआत से पूर्व क्रियान्वित किया गया है।	2013 की शुरूआत से पूर्व किए जाने के

अनुबंध 7.1 (पैरा 7.3.2 देखें) एसजेवीएन के एनजेएचपीएस के संदर्भ में बाहरी जांच की अभ्युक्तियों तथा उसकी प्रास्थिति को दर्शाने वाला विवरण

क्रम सं.	डीएसओ नासिक के पश्च मानसून जांच 2009 में शामिल अभ्युक्तियां	डीएसओ नासिक के पश्च मानसून जांच 2012 में शामिल अभ्युक्तियां	डीएसओ नासिक के पश्च मानसून जांच 2013 में शामिल अभ्युक्तियां
1	_	एनसीडीएस दस्तावेजो (बडे बांध की आवधिक जांच के प्रारूप में वर्णित बिन्दु संख्या 4.3 के अनुसार) को सीडब्ल्यूसी के दिशा-निर्देशो के अनुसार बनाया जाना चाहिए तथा इसकी अनुमोदित प्रति को रिकॉर्ड के लिए इस संगठन में भेजा जाना चाहिए। आपातकालीन कार्रवाई योजना (ईएपी) की तैयारी पर प्राथमिकता के आधार पर ध्यान देना चाहिए। ईएपी को सीडब्ल्यूसी दिशा-निर्देशों के अनुसार यथावत से निर्मित किया जाना चाहिए।	समान स्थिति जो 2012 के निरीक्षण के दौरान रिपोर्ट की गई।
2	_	डाटा लॉगर को गैलरी में नमी से भरपूर स्थितियों के कारण खराब पाया गया। क्योंकि अपलीफ्ट मापन महत्वपूर्ण कारक है इसलिए डाटा लॉगर पहले मरम्मत की जानी चाहिए।	डाटा लॉगर को मरम्मत के लिए भेजा गया । अतः पोर्टेबल डाटा लॉगर की अनुपलब्धता के कारण रीडिंग नहीं की जा सकी। (अंतिम अनुपालन रिपार्ट प्रतीक्षित थी।)
3	_	जल स्तर मापन गैज को अपठनीय स्थिति में देखा गया। पृथक पठनीय तथा वाटर प्रूफ गैज स्थापित की जानी चाहिए तथा जल स्तर रीडिंग की स्वचालित जल स्तर रिकॉर्डर की रीडिंग के साथ तुलनात्मक जांच की जाएगी।	समान स्थिति जो 2012 के निरीक्षण के दौरान रिपोर्ट की गई ।
4	_	तीन स्ट्रांग मोशन एक्सेलेरोग्राफो को फाउंडेशन गैलेरी, जांच गैलेरी एवं बांध के ऊपर अवलोकित किया गया है। हालांकि, संग्रहण तथा अधिग्रहण मॉडयूल (एसएएम) खराब है अतः एक्सेलेरोग्राफ भी कार्यकारी स्थिति में नहीं है। चूंकि बांध क्षेत्र भूकम्प जोन संख्या IV में है अतः भूकम्पीय गतिविधि पर नजर रखना बहुत आवश्यक है।	समान स्थिति जो 2012 के निरीक्षण के दौरान रिपोर्ट की गई ।
5	बांध क्षेत्र पर कोई मौसम संबंधी उपकरण (वर्षा गैज, वायु गति रिकॉर्डर आदि जैसा) संस्थापित नहीं किया गया है।	समान स्थिति जो 2009 के निरीक्षण के दौरान रिपोर्ट की गई ।	समान स्थिति जो 2009 के निरीक्षण के दौरान रिपोर्ट की गई ।

6	_	स्टॉफ को विभिन्न परिचालनात्मक परिस्थितियों के तहत बांध के वास्तविक व्यवहार को सुनिश्चित करने के लिए बांध के सम्पूर्ण यंत्र विन्यास को मॉनीटर एवं परिचालित करने के लिए उचित रूप से प्रशिक्षित किया जाना चाहिए। इसलिए, कोयना हाइड्रोइलेक्ट्रिक परियोजना, महाराष्ट्र का दौरे करने का परामर्श दिया गया है। इसे कार्यालयी संबंध के लिए मांगा जाएं क्योंिक वहाँ यंत्र विन्यास योजना को प्रशिक्षित प्राधिकारियों द्वारा बहुत अच्छे से मॉनीटर एवं परिचालित किया जा रहा है।	समान स्थिति जो 2012 के निरीक्षण के दौरान रिपोर्ट की गई ।
7	_	डाटा अधिग्रहण प्रणाली (डीएएस) को कंपायमान प्रकार के उपकरण रीडिंग के लिए बांध के ऊपर संस्थापित किया गया है। यह वास्तविक समय मॉनीटरिंग के लिए कम्प्यूटर से नहीं जुडा है। निरन्तर मॉनीटरिंग के लिए कम्प्यूटर के साथ इसे जोड़ने के लिए परामर्श दिया गया है।	समान स्थिति जो 2012 के निरीक्षण के दौरान रिपोर्ट की गई।
8	-	ईडीए के मॉडल अध्ययन को वर्तमान स्थिति के लिए किए जाने की आवश्यकता है। इसके अलावा, ईडीए के वास्तविक निष्पादन के परिणाम की अभिकल्पित परिणामों के साथ तुलना की जानी चाहिए।	समान स्थिति जो 2012 के निरीक्षण के दौरान रिपोर्ट की गई।

तकनीकी शब्दावली

क्र. सं.	तकनीकी शब्द	अर्थ
1	अदित	यह पहाड़ी की तरफ से खुलने वाला एक भूमिगत निकास है जो भूमिगत निर्माण (निर्माण प्रवेश द्वारा) अथवा अन्वेषण/यांत्रिकीकरण (अन्वेषी प्रवेष मार्ग) में सहायक होता है।
2	प्रवाह बॉध	एक तटबंध या बाँध जो यह सुनिश्चित करता है कि बाढ़ के प्रवाह के दौरान ढाँचे से ऊपर पानी न बेहेती। कुछ मामलों में यह बाँढ़ के कारण निकटवर्ती क्षेत्रों को तीक्ष्ण बाढ़ से बचाने का भी काम करता है।
3	बस कप्लर	एक डिवाइस जो बिजली आपूर्ति बाधित किए बिना और बिना किसी खतरे के एक बस से दूसरे बस में स्विच करने के लिए प्रयुक्त होता है इसे सर्किट ब्रेकर और आइसोलेटर की सहायता से प्राप्त किया जाता है।
4	क्षमता उपयोग कारक (सीयूएफ)	यह एक तय अवधि में रेटेड क्षमता पर समतुल्य ऊर्जा से पावर स्टेशन द्वारा उत्पादित वास्तविक ऊर्जा का अनुपात है।
5	सर्किट ब्रेकर (सीबी)	सर्किट ब्रेकर खराब स्थिति में उच्च गति आइसोलेटिंग डिवाइस है।
6	बाँध/बैराज	नदी या प्राकृतिक जलाशय पर इस उद्देश्य से बने बाँध (क) जल अवरोधन अथवा, जलाशय बनाना, (ख) बिजली उत्पादन या सिचाई के लिए पानी की मोरी या चैनेल में/से जल का विस्थापन, (ग) एक उपस्कर बनाना जिससे बिजली उत्पादन किया जा सके, (घ) नदी में यातायात सुगम बनाने, (ड.) मलबे के अवरोधन, (च) बाढ़ नियंत्रण, इत्यादि
7	डिजाइन क्षमता	वह क्षमता, जिस पर जल विद्युत संयंत्र बिजली उत्पादन हेतु समर्थ होता है।
8	डिजाइन ऊर्जा	ऊर्जा की वह मात्रा जिसका जल उत्पादन स्टेशन की 95 प्रतिशत स्थापित क्षमता के साथ 90 प्रतिशत विश्वसनीय उत्पादन किया जा सके।
9	डिज़ाइन प्रवाह	डिजाइन की गई ऊर्जा के सृजन हेतु परिकल्पित जल प्रवाह
10	ड्राफ्ट ट्यूब (डीटी)	ड्रॉफ्ट ट्यूब, टर्बाइन के निचले रिंग और टेल रेस के बीच स्थित होता है। यह रनर से निकले पानी को टेल रेस टनेल में पहुँचाता है।
11	ड्राफ्ट ट्यूब (डीटी) गेट	डीटी गेट, टर्बाइन के अनुरक्षण से पूर्व पावर हाउस और टेल पूल को आइसोलेट करने के लिए लगाए जाते हैं। डीटी गेट उत्तोलक की व्यवस्था सहित लगाए जाते हैं।
12	एलीवेशन (ईएल)	एक भूगर्भीय स्थान का एलीवेशन एक निर्धारित संदर्भ बिन्दु से उसकी ऊपर या नीचे की ऊँचाई है।
13	एक्साईटेशन	डीटी विद्युत प्रवाह द्वारा एक चुम्बकीय क्षेत्र के निर्माण की प्रक्रिया एक्साईटेशन कहलाती है।
14	बाढ़ समतल मानचित्र	बाढ़ समतल मानचित्र वह क्षेत्र दर्शाता है जिसमे भिन्न वापसी अवधि बाढ़ हेतु संभावित है।
15	गैबियन	दीवारें लम्बे जस्तेदार मिश्रण को पत्थरों से भरकर बनाई जाती है। गैबियन ढाँचे के लचीलेपन से कंक्रीट या अन्य सामग्री की अपेक्षा बिना तोड़-फोड़ दबाव वहन किया जा सकता है।
16	गैस इंसुलेटेडस्विचगियर (जीआईएस)	गैस-इंसुलेटेड स्विचगियर में इंसुलेटिंग मीडियम गैस-एसएफ 6 - (सल्फर हेक्साफ्लोराइड) होती है।
17	सकल भण्डारण क्षमता	सकल भण्डारण क्षमता सम्पूर्ण जलाशय स्तर से नीचे की क्षमता है। यह डेड स्टोरेज क्षमता और लाइव क्षमता के योग के बराबर होती है।

18	गाइड वेन्स/विकेट गेट्स	यह लोड भिन्नता के अनुसार जल प्रवाह को विनियमित करते है।
19	इंक्लिनोमीटर	इंक्लिनोमीटर अर्थवर्क्स या संरचनाओं के विघटन और समानोतर संचलन का माप करने वाला एक यंत्र है।
20	जलप्लावन मानचित्र	ऐसा क्षेत्र दर्शाने वाला मानचित्र जिसमें एक बाढ़ विशेष घटना द्वारा बाढ़ की संभावना हो। इसमें बाँघ के नीचे जमीनी स्तर शामिल है जो बाँघ की विफलता के कारण उन्मुक्त जल अथवा बाँघ के प्रवाह मार्ग और/ या अन्य संबंधित कार्यों के माध्यम से उन्मुक्त असामान्य प्रवाह से संभावित अतिक्रमण दर्शाता है।
21	लांचिंग एप्रन	लांचिंग एप्रन नदी के तल पर लगा एक लचीला पत्थर कवर है जो अपरदन होल के बगल और नीव के ढक कर अपरदान क्षेत्र को स्थिर करता है और इसे फैलने से रोकता है।
22	लाइव स्टोरेज क्षमता	लाइव स्टोरेज क्षमता जलाशय के सबसे निचले स्तर न्यूनतम गिरावट स्तर (एमटीडीएल) या उच्चतम नियंत्रित जलस्तर या पूरे जलाशय स्तर (एफआरएल) के बीच की क्षमता है।
23	मुख्य प्रवेशिका वाल्व	मुख्य प्रवेशिका वाल्व (उच्च दाव साइड) एचआरटी से टर्बाइन को आईसोलेट करने वाला हाईड्रोलिक यांत्रिक उपकरण है।
24	नियामक वार्षिक संयंत्र उपलब्धता कारक (एनएपीएएफ)	संयंत्र उपलब्धता कारक (पीएएफ) सीईआरसी द्वारा नियामक आधार पर 2009-14 की टैरिफ अवधि में लागू अपने अधिसूचना में संयंत्र प्रकार, गाद की समस्या, अन्य प्रचालन स्थितियों और ज्ञात संयंत्र कठिनाइयेां को देखते हुए प्रत्येक जलविद्युत स्टेशनों हेतु निर्धारित किया गया था।
25	जलमार्ग	जल टर्बाइन को दाब के अंतर्गत जल आपूर्ति करने हेतु एक बंद पाइपलाइन।
26	संयंत्र उपलब्धता कारक (पीएएफ)	संयंत्र उपलब्धता कारक (पीएएफ) किसी अविधि हेतु उत्पादन स्टेशन के संबंध में मे.वा. में स्थापित क्षमता में से नियामक सहायक बिजली खपत कम कर प्रतिशतता के रूप में व्यक्त अविध के दौरान सभी दिनों के लिए घोषित प्रतिदिन क्षमताओं (डीसीज़) का औसत है।
27	दबाव शाफ्ट (पीएस)	उच्च दाब झेलने हेतु बनाई गई एक उर्ध्वाकार या झुकी हुई शॉफ्ट। दबाव शॉफ्ट बंद नलिकायें हैं जो पूर्णतया आवेश शॉफट और मुख्य प्रवेशिका वाल्व (एमआईवी) बीच संकेंद्रित है और दबाव के तहत जल प्रचालन को निर्देशित करती है।
28	रेडियल गेट्स	घुमावदार अपस्ट्रीम प्लेट और खम्बों पर टिकी हुई रेडियल आर्म्स और जल प्रवाह नियंत्रण हेतु बाँध में प्रयुक्त अन्य सहयोगी संरचनाओं वाला गेट।
29	संप्रेषण दूरी (आरडी)	एक विशेष बिन्दु से संप्रेषण दूरी।
30	रोटर	इलेक्ट्रिक जनरेटर का वह भाग जो घूमता है। रोटर स्टेटर के अंदर रहता है और ताँबे के तार से ढका होता है। रोटर में एक शक्तिशाली चुम्बक होता है। जब रोटर स्टेटर के चारों ओर चलता है तो बिजली उत्पन्न होती है और रोटर से उत्पन्न चुम्बकीय क्षेत्र व ताँबे के तार में बिजली उत्पन्न करता है। इस आवेश को एकत्र कर बिजली के रूप में भेजा जाता है।
31	रनर	जल रनर के किनारे पर गिरता है, ब्लेड को धकेलता है और फिर टर्बाइन की धुरी की तरफ बहता है। यह टर्बाइन के नीचे स्थित ड्रॉफ्ट ट्यूब के माध्यम से निकलता है।
32	द्वितीयक ऊर्जा	डिजाइन ऊर्जा के अलावा सृजित ऊर्जा
33	स्पर	किनारों को क्षरण से बचाने या जल प्रवाह को एक छोटे चैनल में स्थिर करते हुए किनारों के साथ गाद को रोकने आदि के उद्देश्य से धारा में किनारों से बाहर की तरफ अन्य बैरियर लगाते हुए या स्टोर जेटी, रो ऑफ पाइल्स, क्रिब अथवा दीवार।
34	स्टैडंपाइप दाबमापी	ढाल, तटबंध और मिट्टी से पटी खाइयों के निर्धारण हेतु जल दबाव की मॉनीटरिंग, जल निकासी योजना की प्रभाविता की मॉनीटरिंग, तटबंधों और बाँधों में रिसाव और जमीनी जल प्रचालन की मॉनीटरिंग हेतु प्रयुक्त एक उपकरण।

35	स्टेरिक एक्साईटेशन	''स्टेरिक एक्साईटेशन'' का अर्थ है उद्दीपन प्रणाली की स्टेशनरी प्रकृति। विद्युत प्रवाह के माध्यम से चुम्बकीय क्षेत्र उत्पन्न करने की प्रक्रिया एक्साईटेशन कहलाती है। स्टेरिक एक्साईटेशन मशीन क्षेत्र के अनुप्रयोग हेतु एसी को डीसी में बदलता है।
36	सर्ज शॉफ्ट (एसएस)	सर्ज शॉफ्ट हेड रेस टनेल के अंत में स्थित होता है। यह पावर हाउस में मशीन चलने और ट्रिपिंग के मामले में आने वाली आवेश को अवशोषित और कम करने हेतु उपयुक्त उँचाई और व्यास वाली एक कुओं की तरह की संरचना है।
37	टेल रेस टनेल (टीआरटी)	जोड़ने वाली धार तक पावर हाउस से नीचे की तरफ जल ले जाने वाली टनेल।
38	टो वॉल	यह पिचिंग हेतु आधार प्रदान के लिए सतह या छत और बाँध को दिशा-निर्देश अथवा किनारे के आगे के सिरे की संधि पर निर्मित एक उथली दीवार है।
39	ट्रूनियन	वह पिन या कील जिस पर कोई भी चीज घूम सके या झुकाई जा सके।

संकेताक्षरों की सूची

संकेताक्षर	पूरा नाम
एएफसी	वार्षिक निर्धारित प्रभार
एटीआर	कार्रवाई रिपोर्ट
बीपीएसए	बल्क पावर आपूर्ति समझौता
बीआरपीएल	बीएसईएस राजधानी प्राईवेट लिमिटेड
बीवाईपीएल	बीएसईएस यमुना प्राईवेट लिमिटेड
सीबी	सर्किट ब्रेकर
सीईए	केंद्रीय विद्युत प्राधिकरण
सीईआरसी	केंद्रीय विद्युत विनियामक आयोग
सीओडी	वाणिज्यिक प्रचालन तिथि
सीपीएसईज़	केंद्रीय सार्वजनिक क्षेत्र उपक्रम
सीयूएफ	क्षमता उपयोग फैक्टर
सीडब्ल्यूसी	केंद्रीय जल आयोग
डीसी	घोषित क्षमता
डीजीपीएस	धौली गंगा पावर स्टेशन
डीजीआर	दैनिक उत्पादन रिपोर्ट
डिस्कोम	वितरण कंपनियां
डीएमएमसी	आपदा प्रबंधन और मिटीगेसन केंद्र
डीएमपी	आपदा प्रबंधन योजना
डीपीआर	विस्तृत परियोजना रिपोर्ट
डीएसओ	बांध सुरक्षा संगठन
डीटी	ड्राफ्ट ट्यूब
डीवीबी	दिल्ली विद्युत बोर्ड
ईएंडएम	इलैक्ट्रो-मेकैनिकल
ईएपी	आपातकालीन कार्रवाई योजना
ईसीआर	ऊर्जा प्रभार दर
ईआईए	पर्यावरण प्रभाव विश्लेषण
ईएल	उन्नयन
ईएमपी	पर्यावरण प्रबंधन योजना
ईआरपी	उद्यम संसाधन योजना
एफईआरवी	विदेश विनिमय दर विभिन्नता
एफआर	व्यावहार्यता रिपोर्ट

एफआरएल	पूर्ण जलाशय स्तर
जीएंडडी	गेज और निकासी
जीआईएस	गैस इंस्सुलेटिड स्विचगियर
जीओआई	भारत सरकार
जीओयूके	उत्तराखंड सरकार
एचओपी	पावर स्टेशन का प्रधान
आईडीईए	इंटरैक्टिव डाटाऐक्स्ट्रक्शन और विश्लेषण
आईईजीसी	भारतीय विद्युत ग्रिड कोड
आईएसपी	इंदिरा सागर पावर स्टेशन
केवी	किलो वोल्टस
एलसी	साख पत्र
एलओए	पंचाट पत्र
एमडीडीएल	न्यूनतम ड्रा डाऊन लेवल
एमआईवी	मुख्य इनलैट वाल्व
एमओपी	विद्युत मंत्रालय
एमआरएल	अधिकतम जलाशय स्तर
एमएसआर	माइक्रो सिस्मिक रिकॉर्डर
एमयू	मिलीयन यूनिट
एमडब्ल्यू	मैगा वाट
एमडब्ल्यूएच	मैगा वाट घंटा
एनएमडीसी	एनएचडीसी लिमिटेड
एनएचपीसी	एनएचपीसी लिमिटेड
एनजेएचपीएस	नाथपा झाकरी हाईड्रोपावर स्टेशन
एनएपीएएफ	नियामक वार्षिक संयंत्र उपलब्धता कारक
एनआरएलडीसी	उत्तरी क्षेत्र लोड प्रेषण केंद्र
एनआरपीसी	उत्तरी क्षेत्र विद्युत समिति
ओएंडएम	प्रचालन और अनुरक्षण
ओईएम	मूल उपस्कर निर्माता
ओआरएम	प्रचालन समीक्षा बैठक
पीएएफ	संयंत्र उपलब्धता कारक
पीडीडी, जेएंडके	विद्युत विकास विभाग, जम्मू और कश्मीर
पीपीए	विद्युत खरीद कारक
आरएंडडी	अनुसंधान और विकास

आरखीएम नवीकरण और आधुनिकीकरण आरबीएम नदी तल सामग्री आरसीसी सुदृढ़िकरण सीमेंट कंकरीट आरसीई संशोधित लागत अनुमान आरडी रेफरल दूरी आरएचईपी रामपुर हाईड्रो विद्युत परियोजना आरएलडीसी रिजनल लोड डिस्पैच सेन्टर आरओएम जलाशय प्रचालन मैन्यूल
आरसीसी सुदृढ़िकरण सीमेंट कंकरीट आरसीई संशोधित लागत अनुमान आरडी रेफरल दूरी आरएचईपी रामपुर हाईड्रो विद्युत परियोजना आरएलडीसी रिजनल लोड डिस्पैच सेन्टर आरओएम जलाशय प्रचालन मैन्यूल
आरसीई संशोधित लागत अनुमान आरडी रेफरल दूरी आरएचईपी रामपुर हाईड्रो विद्युत परियोजना आरएलडीसी रिजनल लोड डिस्पैच सेन्टर आरओएम जलाशय प्रचालन मैन्यूल
आरडी रेफरल दूरी आरएचईपी रामपुर हाईड्रो विद्युत परियोजना आरएलडीसी रिजनल लोड डिस्पैच सेन्टर आरओएम जलाशय प्रचालन मैन्यूल
आरएचईपी रामपुर हाईड्रो विद्युत परियोजना आरएलडीसी रिजनल लोड डिस्पैच सेन्टर आरओएम जलाशय प्रचालन मैन्यूल
आरएलडीसी रिजनल लोड डिस्पैच सेन्टर आरओएम जलाशय प्रचालन मैन्यूल
आरओएम जलाशय प्रचालन मैन्यूल
Ci Ci
आरथोथार नहीं का बहात
जारजाजार विशेष
आरपीसी क्षेत्रीय पावर सिमति
आरटीजीएस वास्तविक समय सकल निर्धारण
एससीएडीए पर्येवेक्षक नियंत्रण और डाटा अधिग्रहण
एसजेवीएन लिमिटेड
एसएलडीसी राज्य लोड डिस्पैच केंद्र
एसओपी मानक प्रचालन प्रक्रिया
टीजीबी टर्बाइन गाईड बियरिंग
टीएचडीसी इंडिया लिमिटेड
टीएचपीएस टिहरी हाइड्रोपावर स्टेशन
टीपीएस टनकपुर हाइड्रोपावर स्टेशन
टीआरसी टेल रेस चैनल
टीटी टेलीग्रॉफिक ट्रांसफर
यूपी उत्तर प्रदेश
यूपीपीसीएल उत्तर प्रदेश पावर कंपनी लिमिटेड
डब्ल्यूपीपीपी निर्माण कार्य और खरीद नीति और प्रक्रिया

© भारत के नियंत्रक-महालेखापरीक्षक का प्रतिवेदन www.cag.gov.in